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  Unraveling  the complexities of pulmonary arterial hypertension (PAH) is chal-
lenging due to its multifaceted nature, encompassing molecular, cellular, tissue, 
and organ-level alterations. The advent of omics technologies, including genomics, 
 epigenomics, transcriptomics, metabolomics, and proteomics, has generated a vast 
array of public and nonpublic datasets from both humans and model organisms, 
opening new avenues for understanding PAH. However, the insights provided by 
individual omics datasets into the molecular mechanisms of PAH are inherently 
limited. In response, efforts are increasing to develop integrative omics approaches 
designed to synthesize multidimensional omics data into a cohesive understanding 
of the molecular dynamics of PAH. In this review, we discuss various strategies for 
integrating multiomic data and illustrate their application in PAH research. We 
explore the challenges encountered and the profound potential of leveraging omics 
data for comprehensive molecular insight as well as for the identification of novel 
therapeutic targets and biomarkers specific to PAH. Furthermore, in this review, 
we seek to elucidate the process and rationale behind conducting integrative omics 
studies in PAH, raising critical questions about the feasibility and future prospects 
of multiomic integration in unraveling the complexities of this disease.  

           INTRODUCTION
 Pulmonary arterial hypertension (PAH) 
is a fatal vasculopathy characterized by 
pulmonary vasoconstriction and adverse re-
modeling of the distal pulmonary arteries. 
Progression of the disease is manifested by 
a significant increase in pulmonary artery 
pressure, which strains the right ventricle 
(RV), leading to hypertrophy and ultimate-
ly heart failure, the leading cause of death 

in PAH patients. 1  The pathogenesis of 
PAH is complex and involves sophisticated 
interactions between multiple organs—in-
cluding the lungs, RV, bone marrow, and 
spleen—and different cell types—includ-
ing smooth muscle cells, endothelial cells, 
fibroblasts, and inflammatory cells. 2﻿

  The advent of omics technologies 
has advanced our understanding of the 

molecular intricacies of PAH, revealing 
extensive molecular dysfunction through 
genomic, epigenomic, transcriptomic, 
proteomic, and metabolomic studies. 3  
While authors of studies of individual 
omic layers have uncovered potential 
new therapeutic targets and biomark-
ers, it is increasingly recognized that 
a narrow focus on single-omic facets 
provides an incomplete picture of the 
intricate mechanisms linking molecular 
variations to clinical disease manifesta-
tions. Biological systems are manifested 
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by complex networks and interactions 
that span multiple omic domains and 
underlie the pathology of PAH. 4﻿

  The integration of multiomic data is 
essential to unravel the complex mech-
anisms of PAH and provide the basis 
for novel therapies and interventions. 
However, this integrative approach poses 
significant computational challenges, 
ranging from the development of sophis-
ticated statistical methods to the creation 
of comprehensive databases that link 
omic levels to biological functions and 
disease states. 5  Addressing these challeng-
es requires computational and program-
ming expertise not traditionally found 
in biological laboratories. The move 
toward multiomic integration requires a 
collaborative effort that brings together 
the knowledge of biologists, bioinforma-
ticians, and computer scientists. This in-
terdisciplinary collaboration is critical to 
overcoming the computational hurdles of 
multiomic data analysis, thereby moving 
PAH research into a new era of discovery 
and therapeutic development.

 In this review, we will explore the field 
of integrative multiomic studies and their 
central role in advancing our understand-
ing of PAH. First, we will provide an in-
sightful overview of the core omics data 
types central to PAH research. Building 
on this foundation, we will explore the 
principles of multidimensional data 
integration and provide a thorough ex-
amination of the cutting-edge methods 
and tools that are shaping this vibrant 
area of study ( Figure 1 ). Through a series 
of illustrative examples, we will highlight 
the real-world applications and signifi-
cant achievements of multiomic studies 
in PAH, demonstrating their ability to 
unravel the intricacies of the disease. 
Finally, we will discuss the current 
challenges and limitations of integrative 
multiomic approaches and assess the gap 
between expectations and actual achieve-
ments, challenging common myths and 
highlighting the tangible benefits these 
studies offer.   

 MULTIOMIC: WHAT ARE WE 
TALKING ABOUT?
 Multiomics, also known as integrated 
omics or panomics, combines  multiple 

﻿ ﻿
 Figure 1:    Navigating omic data integration: methods and challenges.      Multiomics combines 
data from multiple platforms, offering comprehensive insight into biological systems. It 
begins with meticulous sample collection and preparation, encompassing various biological 
specimens like blood and tissue, pivotal for capturing a wide array of omic information, such 
as genomics, transcriptomics, epigenomics, proteomics, and metabolomics. The integration 
of multiomic data faces notable challenges in analysis and synthesis, including the high 
costs of omics technologies, computational complexities, dataset variability, and limited data 
sharing among researchers. Nevertheless, by harnessing machine learning and statistical 
approaches—including pairwise integration, dimensionality reduction, and network-based 
methodologies—the integration process unlocks invaluable insights. These include the 
identification of novel biomarkers, therapeutic targets, and the development of enhanced risk 
prediction models, thereby illustrating the transformative power of integrated omic data in 
pushing the boundaries of our understanding of complex biological systems.
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datasets to analyze, visualize, and 
interpret the mechanisms of biological 
processes. 6  It aims to identify molecular 
markers by uncovering genomic, tran-
scriptomic, proteomic, and metabolic 
changes and capturing spatiotemporal 
dynamics. 7  Multiomics provides insights 
into molecular functions, interactions, 
and cellular outcomes, helping to 
identify predictive biomarkers and drug 
targets and refine disease prognosis. 8  An 
understanding of single-omics strategies 
is essential before embarking on multio-
mics analysis, especially in PAH where 
each approach provides unique insights 
into the molecular mechanisms of the 
disease. 

 Genomics
 Genomic techniques are designed to 
explore interindividual variation at 
both the germline and somatic levels by 
sequencing the genome of interest. 9  The 
evolution from first-generation Sanger 
sequencing to the eventual third-genera-
tion long-read sequencing has facilitated 
whole genome/exosome sequencing with 
sufficient depth to characterize the mu-
tational landscape within a given sam-
ple. 10  For example, advances in genomics 
have revealed heterozygous germline 
mutations in the BMPR2 gene as the 
primary genetic cause of most cases of 
familial PAH, with over 600 mutations 
identified. These mutations, including 
nonsense, frameshift, splice-site, mis-
sense, and copy number variants, are 
prevalent in over 75% of affected fam-
ilies. Authors of genomic studies have 
also identified more than mutations in 
18 other genes such as ACVRL1, ENG, 
SMAD9, and TET2, advancing our 
understanding and paving the way for 
targeted diagnostics and therapies. 11     –﻿ 14﻿

    Epigenomics
 Epigenetics, the study of heritable 
traits or stable changes in cell function 
without changes in DNA sequence, 
encompasses histone modification, 
DNA methylation, and noncoding RNA 
(ncRNA) regulation. 15  Epigenomics 
studies these modifications across the 
genome and provides insights into their 
role in cellular processes and disease de-
velopment. 16  Techniques such as chro-
matin immunoprecipitation sequencing 

(ChIP-Seq) map histone modifications, 
while assay for transposase-accessi-
ble chromatin sequencing reveals the 
dynamics of chromatin accessibility. 17  
Whole-genome bisulfite sequencing and 
DNA methylation microarrays profile 
DNA methylation patterns, and RNA 
sequencing (RNA-Seq) unveils ncRNA 
modifications. 18﻿,﻿ 19  Epigenetic modifica-
tions play a critical role in PAH, with 
DNA hypermethylation associated with 
abnormal cell proliferation and resis-
tance to apoptosis in small pulmonary 
arteries. Authors of studies have identi-
fied hypermethylation of specific genes 
such as BMPR2 and SOD2 in PAH, 
influencing disease pathogenesis. 20﻿,﻿ 21  
Epigenetic age acceleration observed 
in PAH patients suggests accelerated 
aging in key tissues and blood compo-
nents. 22  In addition, omic technologies 
have highlighted the regulatory role of 
ncRNAs, such as miR-17-5p and miR-
23a-3p in PAH pathology, affecting 
potent signaling pathways like BMP/
SMAD. 23﻿,﻿ 24﻿

    Transcriptomics
 Transcriptomics techniques such as 
next-generation sequencing and RNA 
microarrays enable the profiling of 
differentially expressed genes. These 
methods provide insight into distin-
guishing normal from disease states by 
quantifying mRNA abundance across 
thousands of genes. 25﻿,﻿ 26  Bulk RNA-Seq 
provides a broad overview but lacks 
resolution of individual cell behavior, 
in contrast with single-cell RNA-Seq, 
which dissects transcriptomes at high 
resolution and identifies distinct cell 
types and states. The newly developed 
spatial RNA-Seq technology (spatial 
transcriptomics) preserves the spatial 
context of RNA expression and maps 
gene expression within tissue archi-
tecture for comprehensive studies of 
biological systems. 25﻿

  Transcriptomic studies in PAH have 
provided tremendous insight into disease 
mechanisms and therapeutic targets. 
Rodor et al. 27  uncovered the involvement 
of endothelial cells in PAH inflam-
mation by demonstrating upregulated 
major histocompatibility complex class 
II pathways in a mouse model. Similarly, 
Potus et al. 14  identified decreased TET2 

expression in peripheral blood mononu-
clear cells from PAH patients, suggest-
ing a role in disease pathophysiology. 
Single-cell RNA-Seq allows detailed 
cellular examination, highlighting gene 
expression variations within specific cell 
groups. 28  Notably, activation of the  
NF-κB pathway in monocytes and 
dendritic cells has been observed in 
experimental PAH models. 29  Moreover, 
comparative transcriptomic analyses 
revealed dysregulated genes across 
pulmonary artery cell clusters in PAH. 30  
On the other hand, spatial transcrip-
tomics revealed immune cell patterns 
near damaged vessels in rat lungs with 
induced PAH, shedding light on the 
nuances of the disease. 31  These advances 
provide insights into the pathogene-
sis of PAH and potential therapeutic 
strategies, underscoring the importance 
of omics technologies in unraveling 
complex diseases.  

Proteomics
 Proteomics investigates the functional 
implications of all proteins expressed 
in cells, tissues, or organisms, using 
mass spectrometry-based techniques 
to analyze the flow of protein signals. 32  
High-resolution mass spectrome-
ters, including LTQ™Orbitrap™ and 
MALDI-TOF-TOF, accurately mea-
sure protein masses. Given the central 
role of proteins in biological processes, 
accurate measurement of proteome 
changes during disease development 
is critical for biomarker discovery. 33  In 
PAH, Hołda et al. 34  used iTRAQ-based 
LC-MS to analyze the RV proteome in 
MCT-induced PAH rats, revealing early 
upregulation of fatty acid β-oxidation 
and myosin-7 proteins and late overex-
pression of fibrosis-related proteins. Le 
Ribeuz et al. 35  identified differentially 
expressed proteins in PAH-related cells, 
suggesting that KCNK3 deficiency 
induces cancer-related functions. In 
lung lobectomy homogenates, increased 
CLIC4 and decreased haptoglobin levels 
were associated with PAH. 36  Plasma 
proteomic analysis in idiopathic/herita-
ble PAH identified survival-associated 
proteins. 37  With advances in proteomic 
technologies, O-link and SomaScan 
have emerged as critical tools, provid-
ing advanced capabilities to explore 
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the intricate protein landscape within 
biological systems. O-link technolo-
gy uses proximity extension assays for 
precise, high-throughput quantification 
of protein levels across multiple targets 
simultaneously, even in small sam-
ple volumes. 38  In contrast, SomaScan 
employs a large library of aptamers to 
measure over 7000 proteins in a sin-
gle run, providing unparalleled data 
breadth. 39  Both technologies have played 
a pivotal role in PAH research, revealing 
novel biomarkers and therapeutic targets 
and advancing our understanding of the 
molecular mechanisms of the disease. 
For instance, Boucherat et al. 40  used 
O-link to identify proteins associated 
with cardiac fibrosis in PAH patients, 
including latent transforming growth 
factor beta binding protein 2 (LTBP-
2), which correlates with RV function, 
whereas Rhodes et al. 41  used SomaScan 
to identify 6 prognostic proteins in a UK 
PAH cohort, complementing NT-proB-
NP and clinical risk factors for patient 
risk stratification. The authors of these 
studies have underscored the importance 
of proteomic analysis in elucidating 
pathological pathways and disease pro-
gression in PAH.  

Metabolomics
 Metabolomics, a branch of omics, is in-
strumental in elucidating the metabolic 
pathways underlying physiological or 
pathological processes. Using proton 
nuclear magnetic resonance spectrosco-
py or mass spectrometry, metabolomics 
analyzes biological samples to reveal 
intricate metabolic signatures. 42  Over 
the past decade, the importance of 
metabolomics in identifying novel cir-
culating markers of PAH has increased 
dramatically. 43  In a PAH animal model 
(Sugen5416 plus the ovalbumin im-
munization), metabolomics revealed 
elevated levels of oxidized glutathione, 
xanthine, and uric acid, leading to 
increased xanthine oxidase-mediated 
reactive oxygen species release, which 
is known to impair pulmonary artery 
function. 44  In addition, analysis of lung 
tissue from patients with advanced 
PAH revealed metabolic pathways 
that contribute to pulmonary artery 
remodeling, including imbalanced 
arginine pathways and altered heme 

metabolites. 45  Moreover, metabolite 
profiling in idiopathic/heritable PAH 
patients identified altered nucleosides, 
energy metabolism intermediates, and 
decreased sphingomyelins, steroids, and 
phosphatidylcholines, which correlat-
ed with disease severity and patient 
survival. 37  The authors of these studies 
have underscored the role of metabolo-
mics in elucidating PAH mechanisms 
and its potential for in-depth pheno-
typic characterization and prognostic 
assessment.   

 NAVIGATING INTO 
MULTIDIMENSIONAL DATA
 Integrating single-omic data into multi-
dimensional/omic data is a challenging 
task that is crucial for understanding 
pathogenic mechanisms and identifying 
diagnostic or prognostic biomarkers. 
This transformative process merg-
es information from different omics 
domains into comprehensive models. 7  
Data preprocessing, including rigor-
ous quality control and normalization, 
ensures biological comparability across 
data types. 46  Various integration tools, 
such as clustering, predictive modeling, 
and network-based methods, cater to 
specific data combinations and require 
careful selection to balance statistical 
robustness with biological relevance. 
The chosen methodology depends on 
the research objective, whether it is 
biomarker discovery, therapeutic target 
identification, or mechanistic insight. 47  
For biomarker discovery, clustering 
and predictive modeling prioritize 
data-driven insights, while authors of 
mechanistic studies tend to integrate 
biological context with data patterns 
using pairwise integration and net-
work-based methods. 48﻿,﻿ 49  The choice 
between supervised and unsupervised 
strategies also plays a crucial role in 
integration methodologies, with super-
vised approaches enhancing predictive 
modeling and biomarker discovery, 
while unsupervised strategies uncover 
novel patterns and enrich mechanistic 
explorations. 50  A thoughtful selection 
process, considering biological nuances 
and data characteristics, is essential to 
unlock the full potential of multiomic 
research, especially in complex diseases 
like PAH.  

 CLUSTERING/
DIMENSIONALITY 
REDUCTION-BASED 
APPROACHES
Clustering and dimensionality reduc-
tion are fundamental techniques in data 
science that simplify complex datasets 
and facilitate their interpretation. These 
methods unify disparate data types 
into a coherent analytical space, easing 
downstream integration and analysis.51 
Clustering categorizes data points based 
on similarity to identify disease subtypes 
or patterns relevant to diagnosis and 
prognosis. Techniques such as hierar-
chical clustering and k-means clustering 
reveal hidden structures in the data, 
shedding light on disease subpopulations 
and potential markers.52 Dimensionality 
reduction simplifies data by reducing the 
number of variables considered, improv-
ing manageability and analysis. Methods 
such as principal component analysis 
(PCA) and multidimensional scaling 
distill complex datasets into informa-
tive components, preserving essential 
information while eliminating redun-
dancy.53 The integration of multiomic 
data through clustering and dimension-
ality reduction is revolutionizing our 
understanding of biological systems and 
disease mechanisms. These methods 
enable researchers to gain unprecedent-
ed insights into and drive innovation in 
biomedical research.54 Techniques such 
as CIA/MCIA and FALDA demon-
strate how dimensionality reduction 
fuses molecular data, facilitating the 
discovery of new disease subtypes 
and biomarkers while improving our 
understanding of complex biological 
interactions.55 This approach promises 
more precise and effective therapeutic 
strategies in the future.

In PAH, clustering and dimensional 
data reduction are commonly used in 
the unsupervised analysis of single-om-
ic data to investigate whether datasets 
naturally segregate into groups based on 
experimental conditions (eg, PAH versus 
control, treated versus untreated).56–58 
However, their use in a multiomic 
context is less common. Multiomic data 
integration via clustering has emerged 
as a cornerstone in PAH research to aid 
in sample classification and biomarker 
identification. This approach leverages 
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different omic layers to unravel complex 
biological networks in PAH, providing 
a holistic view of disease pathology 
and facilitating precise sample cluster-
ing. As a result, unique cluster-specific 
biomarkers are discovered, offering 
promising avenues for targeted ther-
apies and personalized medicine in 
PAH.59 For example, Wang et al.60 used 
a comprehensive approach, integrating 
mRNA, lncRNA, circRNA, and miRNA 
expression profiles of pulmonary artery 
samples, to differentiate hypoxia-in-
duced pulmonary hypertension rats from 
controls. This unsupervised hierarchical 
clustering categorized samples into dis-
tinct groups based on molecular signa-
tures, revealing the molecular landscape 
underlying PAH pathogenesis. Similarly, 
researchers integrated transcriptome and 
proteome analyses to differentiate be-
tween control and decompensated RV in 
PAH patients. They used RNA-Seq and 
proteomic approaches to study RV tissue 
from patients clinically categorized as 
control, compensated RV, and decom-
pensated RV. PCA and unsupervised 
clustering revealed a distinct separation 
of decompensated RV samples, demon-
strating the robustness of integrated 
omics in delineating pathological 
states in PAH. Such approaches not 
only enhance our understanding of the 
heterogeneity of PAH but also provide 
valuable insights into potential bio-
markers and therapeutic targets for this 
complex disease.

PREDICTIVE MODELING 
APPROACHES
Predictive modeling has emerged as 
a powerful approach in the field of 
multiomics and big data exploration. 
It involves a series of steps, including 
collecting and merging data from mul-
tiple sources, selecting relevant features, 
training models, validating results, and 
translating findings into clinical prac-
tice.40,61,62 First, disparate data, such as 
patient records and genetic databases, 
are combined into comprehensive data-
sets. Then relevant biomarkers are iden-
tified using feature selection techniques 
to train machine learning models that 
predict disease outcomes. These models 
are evaluated using validation data-
sets, with biomarkers that show strong 

predictive ability being prioritized for 
further validation. Notably, this method 
does not require prior knowledge of 
omics integration, relying instead on 
algorithm training.63 Common machine 
learning methods include logistic regres-
sion, support vector machines, random 
forests, neural networks, Bayesian 
models, and boosting techniques.61 In 
summary, predictive modeling provides 
a robust and data-driven means to 
unravel complex biological processes and 
discover clinically relevant biomarkers in 
multiomic datasets.

 In PAH, Pi et al. 43  conducted a com-
prehensive analysis of metabolomic data 
from 117 PAH patients to uncover me-
tabolites and metabolic pathways asso-
ciated with indicators of disease severity 
and RV vulnerability. Their investigation 
focused on 5 key outcomes: RV dilation, 
NT-proBNP levels, REVEAL 2.0 score, 
6-minute walk distance, and mortality. 
They first examined overall metabolic 
differences and their associations with 
these outcomes, followed by a detailed 
analysis of individual metabolites and 
pathways. The team used multivari-
ate analysis techniques such as PCA 
and partial least squares discriminant 
analysis to understand global metabolic 
variation in relation to disease severity. 
Associations between outcomes and 
metabolites were assessed using linear 
and Cox regression analyses, adjusting 
for relevant factors. Of note, 65 metab-
olites were identified as associated with 
mortality, leading to the development of 
a predictive model using 11 consistent 
metabolites. This model, validated in 
an external cohort, shows promise for 
improving the care of PAH patients. 43  
In a similar study, researchers integrated 
transcriptomic and proteomic analyses 
to characterize RV changes in PAH 
patients with RV dysfunction. They 
identified 5 proteins—LTBP-2,  
COL6A3, COL18A1, TNC, and 
CA1—that were elevated in the blood 
of PAH patients. Predictive modeling 
was used to associate these proteins with 
patient survival were established, with 
LTBP-2 showing additional predictive 
value compared with conventional risk 
assessment methods. 40  These findings 
underscore the potential of omic studies 
and predictive modeling to advance our 

understanding of PAH pathogenesis and 
improve biomarker discovery. Neverthe-
less, the application of predictive model-
ing approaches in a multiomic context in 
PAH remains relatively unexplored. 

Pairwise Omics Data Integration
 Pairwise omics data integration has 
emerged as a promising approach in 
biomarker discovery and understand-
ing of disease mechanisms, enabling 
the identification of molecular signa-
tures associated with disease etiology, 
progression, and treatment response. 64  
Pairwise omic data integration in-
volves combining two omic datasets, 
such as genomics and transcriptomics 
or transcriptomics and proteomics, to 
uncover molecular relationships and 
interactions. 65  A widely used approach 
is the analysis of expression quantitative 
trait loci (eQTLs), which stands out as a 
prominent method for pairwise inte-
gration, linking genetic variation with 
changes in transcriptomic profiles. 66  The 
analysis of eQTLs serves as a method 
to elucidate the relationships between 
genetic variants (genomic data) and 
gene expression (transcriptomic data). 
Several computational methods for 
performing eQTL analyses exist, each 
offering unique advantages and tailored 
approaches to uncover the intricate 
relationships between genetic variation 
and gene expression patterns. These 
methods include robust computation-
al algorithms such as GEMMA and 
Matrix eQTL. 67﻿,﻿ 68  Other approaches, 
such as Bayesian methods and machine 
learning algorithms, provide flexible 
and versatile tools for eQTL analysis. 69  
Moreover, recent advances in single-cell 
sequencing technologies have paved the 
way for cell-specific eQTL mapping, 
enabling the dissection of transcription-
al regulatory networks at unprecedented 
resolution. 70  In PAH, eQTL analyses 
decode the complex interplay between 
genetic variation and gene expression 
dysregulation. Authors of studies have 
explored the relationship between 
genomic alterations and gene expression 
patterns in PAH, identifying potential-
ly novel eQTL associated with im-
mune-related pathways, shedding light 
on PAH pathophysiology, and offering 
insights into patient  characterization 
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and identification. For example, Prohas-
ka et al. 71  identified genome-wide single 
nucleotide polymorphisms associated 
with RASA3 expression in PAH pa-
tients and associated with disease severi-
ty and mortality. Similarly, Ulrich et al. 72  
performed transcriptome-wide eQTL 
analysis and uncovered novel genetic 
influences on gene expression variability, 
particularly in immune-related path-
ways, emphasizing the utility of eQTL 
in characterizing PAH patients.

 Correlation analysis, another wide-
ly used approach, quantifies pairwise 
associations between omic features 
(eg, genes, proteins, metabolites) 
across samples, revealing coregulated 
or coexpressed molecular signatures. 73  
Additionally, pathway analysis tools 
map molecular features to known 
biological pathways, helping to identify 
dysregulated pathways associated with 
disease phenotypes. 74  For example, Hou 
et al. 75  used high-throughput sequenc-
ing to study mRNA and lncRNA 
interactions in PAH pathogenesis. 
They integrated cis and trans assays, 
constructed a lncRNA-mRNA coex-
pression network based on Pearson 
correlation coefficients, and established 
a lncRNA-miRNA regulatory network. 
Functional analysis revealed regulatory 
networks involving 285 mRNAs and 
147 lncRNAs, highlighting the im-
portance of transcriptome and epig-
enome integration in understanding 
lncRNA-mRNA interactions in PAH. 75  
Moreover, Chelladurai et al. 76  per-
formed a pairwise integrative analysis, 
combining RNA-Seq and ChIP-Seq, 
to compare the transcriptional profile 
of fibroblasts derived from individuals 
with PAH against healthy controls. 
This comprehensive approach uncov-
ered a robust correlation between the 
altered histone modification signatures 
with the aberrant gene expression 
pattern observed in PAH fibroblasts. 76  
Similarly, researchers have focused on 
pairwise integration of transcriptomic 
and proteomic data to uncover mech-
anisms of RV dysfunction and identify 
novel biomarkers to assess RV function 
in PAH. This combination of knowl-
edge is critical to elucidate molecular 
mechanisms and improve our under-
standing of PAH. 40﻿,﻿ 56﻿

    Network-Based Methodologies
Network-based methods play a criti-
cal role in multiomics integration by 
modeling complex interactions between 
biological molecules, facilitating the 
identification of key regulatory ele-
ments, pathways, and potential thera-
peutic targets.77 These methods fall into 
2 main categories based on network 
construction: those that use established, 
experimentally validated interactions 
sourced from scientific literature data-
bases and those that use correlational 
or statistical approaches.78 Networks 
based on established interactions include 
protein-protein interaction (PPI) net-
works from sources such as STRING 
and BioGRID, gene regulatory networks 
detailing the relationships between tran-
scription factors and target genes, and 
pathway-based networks from databases 
such as KEGG and Reactome.79 In con-
trast, statistical methods such as weight-
ed gene coexpression network analysis 
(WGCNA) and correlation networks 
compute pairwise correlations or use ad-
vanced machine learning techniques to 
infer functional associations or coregula-
tion between omics features, potentially 
revealing novel interactions.80 While 
established interaction-based networks 
are valued for their accuracy, correlation-
al or statistical methods are essential for 
their ability to explore and hypothesize 
novel biological connections, albeit with 
the risk of false positives. In the field of 
PAH, network-based approaches provide 
a systemic understanding of the molec-
ular mechanisms driving pathogenesis 
and facilitate the identification of regu-
latory elements, signaling pathways, and 
therapeutic targets.

 For example, Li et al.82  characterized 
differentially expressed genes in PAH 
lungs and constructed a PPI network 
to evaluate functional relationships 
between hub genes using the STRING 
database. This tool integrates multiple 
data sources, including experimental 
evidence and computational predictions, 
to predict and visualize protein inter-
actions. It assigns confidence scores to 
these interactions based on supporting 
evidence, facilitating the creation of 
a visual network where proteins are 
nodes and their interactions are edges. 81  
Through this analysis, the study au-

thors identified 9 hub genes that were 
significantly upregulated in PAH lung 
tissue compared with control, revealing 
connections to pathways involved in 
DNA-templated transcription, sister 
chromatin cohesion, mitotic nuclear 
division, and regulation of actin cy-
toskeleton. These findings provide 
potential mechanistic insights into the 
development of PAH by elucidating the 
interplay of biological processes at the 
molecular level within PPI networks, 
which will facilitate the identification 
of novel therapeutic targets. 82﻿

  While several statistical network ap-
proaches are available for PAH research, 
WGCNA is the most widely used 
method. For example, Kasavi 83  conduct-
ed a comprehensive study integrating 
omics data by analyzing genome-wide 
gene and miRNA expression patterns 
in idiopathic PAH patients and con-
trols. Using WGCNA in R, the author 
constructed a gene coexpression network 
to identify clusters of highly correlated 
genes, which were then integrated with 
the human PPI network to uncover 
novel molecular insights. Using miR-
NA-target gene interactions from the 
miRTarbase database, the author aimed 
to unveil molecular signatures and 
potential therapeutic drug candidates. 83  
Similarly, Duo et al. 84  applied a WGC-
NA approach to identify key modules 
associated with PAH and to develop 
a diagnostic signature and immune 
landscape for the disease. Their research 
contributed to a better understanding of 
the molecular mechanisms underlying 
PAH and provided valuable insights for 
diagnostic and therapeutic advances in 
PAH. 84﻿

CHALLENGES ASSOCIATED 
WITH MULTIOMIC RESEARCH
Over the past decade, the advent of om-
ics technologies has revolutionized our 
understanding of disease etiology and 
led to groundbreaking discoveries in the 
identification of novel biomarkers and 
therapeutic targets in PAH. This trans-
formative shift has broadened the scope 
of research methodologies, allowing us 
to examine molecular changes compre-
hensively, including global transcriptom-
ic and proteomic changes, rather than 
focusing solely on individual genetic 
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or protein components. By adopting 
this holistic approach, researchers have 
gained deeper insights into the intricate 
molecular landscape of disease, unrav-
eling its complexity and elucidating key 
biological pathways and mechanisms 
involved. However, the next frontier is 
to integrate multiple layers of omic data 
to obtain a unified view and identi-
fy multiomic hubs affected in PAH, 
ultimately improving our understand-
ing of its pathophysiology, accelerating 
biomarker discovery, and prioritizing po-
tential therapeutic targets. However, the 
integration multiomic data poses several 
challenges (Figure 1), including the need 
for diverse expertise (biological, compu-
tational, and programming skills), data 
heterogeneity, and the significant costs 
associated with such approaches. Con-
sequently, authors of previous studies on 
PAH have predominantly focused on 
single-omic analyses, while integrated 
multiomic approaches remain largely 
unexplored in the field. Overcoming 
these challenges is crucial for unlocking 
the full potential of multiomic integra-
tion and advancing our understanding 
and treatment of complex diseases such 
as PAH.

The heterogeneity and variability in-
herent in omics research can be broadly 
categorized into 2 main types. The first 
type encompasses the biological vari-
ability inherent in the samples them-
selves and the criteria used to include 
or exclude them. This category includes 
factors such as the age, sex, and origin 
of the biological subjects as well as the 
methods used to obtain the tissues. For 
instance, differences in blood samples 
obtained via venipuncture versus right 
heart catheterization may introduce 
variability. Similarly, when working with 
tissue biopsies, the specific part of the 
tissue collected (eg, superior versus in-
ferior or left versus right lung sections) 
and the method of collection (autopsy 
versus biopsy) warrant careful consider-
ation to accurately interpret omics data. 
In addition, the selection of a control 
cohort, which could range from healthy 
individuals without any comorbidities 
to patients without a diagnosis of PAH 
or individuals undergoing lung cancer 
resection, can significantly influence the 
data. The second type of heterogeneity 

arises from data processing decisions, 
such as the choice of reference genome, 
alignment methods (eg, STAR versus 
HISAT2), various cutoffs and quality 
control measures, and the analytical 
pipelines employed, which are often 
subject to individual investigator prefer-
ences. This lack of consensus on omics 
data analysis methods, combined with 
the lack of standardized methodolo-
gies for data collection, processing, and 
analysis across different omics studies, 
poses challenges for reproducibility and 
comparability of results across studies. 
For example, a recent systematic review 
highlighting the epigenetic changes 
associated with RV dysfunction under-
scores the reproducibility issues among 
authors of studies using microarrays to 
investigate microRNAs involved in RV 
failure in PAH.85 This variability under-
scores the critical need for standardized 
approaches in omics research to improve 
the comparability and reliability of 
findings.

 The financial burden associated 
with multiomics research has become 
increasingly apparent with the advent of 
advanced technologies like single-cell 
analyses, spatial transcriptomics, and 
Olink proteomics. While these methods 
are transformative, they significantly 
increase the cost of conducting large 
cohort studies. As a result, data min-
ing of previously published datasets 
is emerging as a compelling research 
methodology to mitigate both the finan-
cial constraints and the sample avail-
ability challenges. This is particularly 
relevant for rare diseases such as PAH, 
where obtaining tissue samples from 
organs such as the RV and lungs can be 
difficult for many laboratories. However, 
relying on previously published data 
to supplement new research brings its 
own set of complexities, particularly 
regarding the reproducibility of re-
sults. One major issue is that metadata, 
which are crucial for understanding the 
context and conditions under which 
the data were collected, are not always 
completely or readily available to the 
research community. Furthermore, some 
datasets may not be shared or accessible 
at all, limiting their utility for further 
investigation and slowing the pace of 
new discoveries in the field. This lack of 

accessibility does not serve the interests 
of patients, scientific advancement, or 
research progress. This scenario compli-
cates efforts to replicate studies or build 
on existing research and underscores the 
need for better standards and practices 
for data sharing and documentation in 
the multiomics field.  

 PROMISES OF MULTIOMICS 
INTEGRATION FOR 
IDENTIFYING NOVEL 
BIOMARKERS AND 
TREATMENT TARGETS
 The incorporation of multiomic ap-
proaches into PAH research is still in 
its infancy, primarily nestled within 
the domain of basic science to improve 
our foundational comprehension of the 
disease. Multiomic analyses in PAH aim 
to unravel complex biological mecha-
nisms, including the impact of histone 
modifications on the transcriptome, 
the regulatory functions of ncRNA on 
gene expression, and the delineation eQ
TLs. 72﻿,﻿ 86       –﻿ 90  Such exploratory endeavors 
are pivotal because they contribute to 
building a robust framework of fun-
damental biological knowledge, albeit 
with a delayed trajectory toward direct 
clinical applicability. Notwithstanding 
the invaluable insights afforded by basic 
science research, the foray of multiom-
ic methodologies into the clinical and 
translational research landscape of PAH 
has been relatively limited. To date, the 
application of multiomic approaches has 
focused primarily on the identification 
and prioritization of potential biomark-
ers, notably through the detection of 
gene alterations at both the transcrip-
tomic and proteomic levels in the RV 
and blood of patients suffering from 
RV failure due to PAH40  as well as the 
establishment of gene expression profiles 
and identification of novel protein alter-
ations in the lungs of patients afflicted 
with PAH to gain further insight into 
novel biomarkers that characterize this 
disease. 91  Similar analysis has been used 
to discover novel therapeutic targets in 
PAH. 87  However, the superior efficacy 
of a comprehensive multiomic biomark-
er panel that includes specific markers 
from epigenomics, proteomics, and me-
tabolomics over traditional single-omic 
strategies remains an underexplored 
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frontier. Similarly, the exploration of the 
benefits of panomic therapeutic strat-
egies that may emerge from multiomic 
research is still in its preliminary stages.  

 CONCLUSION
 In conclusion, the integration of mul-
tiomic data holds significant potential 
and promises for unraveling the com-
plexities underlying the pathophysiol-
ogy of PAH. However, evolving from 
theoretical research to tangible clinical 
applications remains a major challenge. 
The journey to effectively bridge the 
gap between groundbreaking multiomic 
discoveries and their clinical applica-
tion is a daunting task, highlighting an 
urgent need for continued research and 
innovation in this field. Moreover, this 
journey requires not only advancements 
in technology and analytics but also a 
multidisciplinary approach that encom-
passes clinicians, researchers, and pa-
tients. By fostering collaboration across 
these diverse areas, we can accelerate 
the translation of multiomic insights 
into treatments that significantly 
improve patient outcomes, pushing the 
boundaries of what is currently possible 
in PAH care.    
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