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                                         Exercise intolerance is a common feature of many cardiopulmonary diseases includ-
ing pulmonary hypertension (PH) and sleep disordered breathing (SDB), which 
includes obstructive sleep apnea and obesity hypoventilation syndrome. Physiologic 
abnormalities in both PH and SDB can drive exercise intolerance, and biologi-
cal mechanisms overlap among the conditions including systemic inflammation, 
oxidative stress, metabolic dysfunction, and endothelial dysfunction. Despite this 
understanding, evidence establishing clear causal relationships among PH, SDB, and 
exercise intolerance is lacking. Data show that treatment of SDB may improve exer-
cise capacity, and exercise training likely improves SDB, although these relationships 
specifically in PH remain understudied. In this manuscript, we summarize existing 
data of mechanisms and clinical observations in PH, SDB and exercise and identify 
gaps and opportunities for future investigation.   
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   INTRODUCTION
 Exercise intolerance is the hallmark 
of most cardiopulmonary diseases, 
including pulmonary hypertension 
(PH). In PH, subjective and objective 
assessments of exercise capacity are 
paramount in diagnosis, risk stratifica-
tion, and therapeutic decision making. 
Sleep disordered breathing (SDB), in-
cluding obstructive sleep apnea (OSA) 
and obesity hypoventilation syndrome 
(OHS), is associated with PH in a rela-
tionship that is likely bidirectional yet 
not completely understood. PH related 
to SDB is classified as Group 3 PH 
according to the most recent interna-
tional consensus guidelines, 1  although 
the intersection among PH, SDB, and 
exercise likely involves Group 2 PH 
or PH due to left-heart disease and/
or heart failure with preserved ejection 
fraction. Delineating PH subgroups 
is beyond the scope of this review but 
outlined in the most recent consensus 
guidelines. 1  There is a growing un-
derstanding that OSA and OHS are 
linked to physiologic abnormalities and 
limitations in exercise, even in those 
without apparent cardiopulmonary 
comorbidities.

 Nocturnal hypoventilation and hy-
poxemia are the pathophysiologic basis 
for both OSA and OHS. PH is typically 
mild in isolated OSA, 2  although pro-
longed nocturnal hypoxemia is associat-
ed with worse hemodynamics in OSA 
when PH is suspected. 3  OSA severity 
is quantified by the Apnea-Hypopnea 
Index (AHI). The relationship between 
hypopneas, nocturnal hypoxia, and their 
systemic effects are reviewed separately. 4  
Accordingly, in OHS, the risk for pul-
monary vascular disease is much high-
er. 5 ,  6  The prevalence of PH secondary 
to SDB remains unclear; however, OHS 
is common in the general population 
(0.4% of the general US population 7  and 
17%–30% in high-risk individuals such 
as those with obesity and OSA 8 ). When 
PH occurs as a complication of OHS, it 
is frequently quite severe and is associ-
ated with both right ventricular (RV) 
failure and poor long-term outcomes. 9  
Given the growing obesity epidemic in 
the Western world, PH related to SDB 
is likely to become a more prevalent 
problem deserving of dedicated study.

 Many overlapping mechanisms exist 
among SDB, PH, and exercise intoler-

ance, including systemic inflammation, 
endothelial dysfunction, metabolic 
dysfunction, and cardiac impairment 
(Box). Despite this overlap, insights into 
causality among these conditions and 
the directionality of the relationships 
remains unclear. Much more work is 
needed to understand these relation-
ships from epidemiologic associations to 
molecular mechanisms. In this review, 
we aim to discuss the current literature 
describing the relationships between 
SDB, PH, and exercise and identify gaps 
that are deserving of further study.

  We will primarily discuss observations 
in adults. Although guidelines recom-
mend screening echocardiograms for 
children with severe SDB 10  and treat-
ment of concomitant SDB and PH has 
been demonstrated to improve exercise 
intolerance, 11  the prevalence of PH in 
the pediatric population is likely lower 
than commonly thought, 12  and more 
comprehensive study is needed. Mecha-
nisms connecting these conditions in the 
pediatric population overlap with what 
is known in the adult population and are 
reviewed extensively elsewhere. 13 

    MECHANISMS OF SDB AND 
EXERCISE INTOLERANCE  
IN PH
 The primary pathophysiology of OSA is 
repetitive occlusion of the upper airway 
during sleep, which results in nocturnal 
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hypoxemia and arousals. 14  OHS is char-
acterized by obesity-related changes in 
the respiratory system, alterations in re-
spiratory drive, and breathing abnormal-
ities during sleep, all leading to chronic 
nocturnal hypoventilation. 15  Physiologic 
effects on pulmonary hemodynamics are 
consistently observed in patients with 
SDB. The increased intrapleural pres-
sure seen during apneic episodes of SDB 
likely increases left atrial pressure and 
RV afterload. 16  Hypoxic episodes cause 
hypoxic vasoconstriction of the pulmo-
nary vasculature, raising the pulmonary 
vascular resistance (PVR) and RV after-
load, and activating hypoxia inducible 
factors (HIFs) that are responsible for 
downstream metabolic dysfunction, 
upregulation of VEGF, and activation 
of inflammatory and oxidative stress 
pathways (Figure  1 ). This culminates in 
endothelial dysfunction, a hallmark of 
all pulmonary vascular diseases that is 
clearly potentiated by SDB. 17 

   Systemic inflammation and oxidative 
stress are shared mechanistic hallmarks 
of SDB and PH and likely contribute to 
exercise intolerance in both disorders. 18 ,  19  
In humans, chronic perivascular inflam-
mation is linked to the loss of pulmo-
nary vascular compliance and extracel-
lular matrix remodeling and fibrosis in 

PH. 20 ,  21  In preclinical PH models, HIFs 
and TNF-α mediate inflammation and 
potentiate oxidative stress via increased 
production of reactive oxygen species 
(ROS). Both mediators are hypothesized 
to regulate NADPH oxidases that are 
important sources of ROS, but human 
studies establishing the link among 
these processes are inconsistent, rein-
forcing the need for further mechanistic 
studies. 22 –  24 

  Mice exposed to chronic intermit-
tent hypoxia (simulating the nocturnal 
desaturations observed in SDB) de-
veloped PH associated with increased 
NADPH oxidase and increased activity 
of platelet-derived growth factor β and 
downstream protein kinase B. 25  Mice 
with inactive NADPH oxidase had a 
decrease in the development of PH and 
these molecular derangements, sug-
gesting that NADPH oxidase may be a 
common mechanistic link between SDB 
and PH. 25  Several vasoactive mediators 
have been implicated in the overlapping 
pathogenesis of SDB and PH including 
serotonin, angiopoetin-1, endothelin-1, 
and nitric oxide. Stimulated by hypoxia, 
these mediators have a common effect 
in both SDB and PH by promoting 
pulmonary vascular remodeling and 
biventricular dysfunction. 26  Data sug-

gesting that the oxidative stress gener-
ated by nocturnal hypoxia in OSA can 
predispose patients to venous throm-
boembolism but can be ameliorated 
by continuous positive airway pressure 
(CPAP) are encouraging 27 ; however, 
these observations are confounded by 
concomitant obesity and advanced age, 
which are known risk factors for these 
processes. Unfortunately, human studies 
at manipulating these pathways in both 
SDB and PH have been disappointing 
and further work is needed.

 Endothelial dysfunction is a critical 
common hallmark of both SDB and PH 
and likely inextricably tied to system-
ic inflammation and oxidative stress. 
Central to the pathobiology of both 
pulmonary vascular remodeling and 
risk of cardiovascular disease, endothe-
lial dysfunction in both diseases is, in 
part, instigated by chronic intermittent 
hypoxia. 28 ,  29  Circulating endothelial 
progenitor cells (EPCs) have long been 
hypothesized to play a role in both OSA 
and PH, either as part of the reparative 
vascular response to injury or instigating 
a cancerlike tumorigenesis. Studies in 
OSA have yielded conflicting results, 30 ,  31  
and although more encouraging data 
establish a role for EPCs in the patho-
biology of PAH, 32 ,  33  translation from 
preclinical studies to humans remains 
limited. Few studies link endothelial 
dysfunction in OSA with exercise and 
PH. Using a noninvasive device to 
approximate endothelial dysfunction, Jen 
et al. 34  were unable to detect a cor-
relation between arterial stiffness after 
exercise and severity of OSA but did 
correlate vessel stiffness with leg fatigue 
and oxygen pulse (a marker of cardiac 
output). Studies using direct assessments 
of endothelial function related to exer-
cise in OSA and PH remain lacking.

 Significant gaps linking exercise 
intolerance to the many mechanisms that 
connect SDB and PH remain. Increasing 
our understanding of skeletal muscle 
dysfunction in these disorders will likely 
help to address this knowledge gap. 
Metabolic dysfunction is observed in 
the skeletal muscle of both patients with 
OSA and pulmonary arterial hyperten-
sion (PAH). 35 ,  36  Although data recapitu-
lating this dysfunction during exercise are 
limited, diaphragmatic dysfunction is a 

  Box.    Shared themes of exercise intolerance in SDB and PH 

 Systemic inflammation 
•       Perivascular inflammation in PH 
•       Activation of HIFs 
•       Increased activity of NADPH oxidase and oxidative stress 
•       Thromboembolism in OSA due to oxidative stress  

 Endothelial dysfunction
•        In part, instigated by chronic intermittent hypoxia 
•       Circulating endothelial progenitor cells may be part of the reparative vascular response to 

injury or a cancerlike tumorigenesis
•       May correlate with leg fatigue during exercise  

 Skeletal muscle dysfunction
•        Cellular metabolic dysfunction 
•       Diaphragmatic muscle proteolysis 
•       Respiratory muscle atrophy leads to ventilatory insufficiency  

 Mutual beneficial effects of exercise training and PAP therapy
•        Exercise improves AHI and VO2 max 
•       PAP improves exercise performance with and without cardiopulmonary disease (including 

PH): VO2max and heart rate recovery
•       PAP improves pulmonary artery pressures  

 SDB = sleep disordered breathing; PH = pulmonary hypertension; HIF = hypoxia inducible 
factor; OSA = obstructive sleep apnea; PAP = positive airway pressure; AHI = apnea-hypopnea 
index.   
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likely contributor to exercise intolerance 
in both OSA and PAH. In PAH, reduced 
diaphragmatic muscle fiber cross-section-
al area in experimental PH has been asso-
ciated with increased proteolytic activity. 
These findings were recapitulated in 
human disease, suggesting that respirato-
ry muscle atrophy is specifically implicat-
ed in the ventilatory inefficiency observed 
in PAH patients. 37  Abnormal cardio-
vascular responses to exercise in OSA 
are consistently observed in the forms 
of abnormal diastolic blood pressure 
response, 38  chronotropic incompetence, 39  
heart rate recovery after exercise, 40 ,  41  and 
left-ventricular dysfunction. 42 –  45  Systolic 
dysfunction of the RV is an inevitable 
consequence of persistent increases in af-
terload and may be the most pronounced 

in PAH patients with severe nocturnal 
hypoxemia and OSA. 46  As with Group 
1 PAH, a sex-based differential response 
of the RV to afterload in all Group 3 PH 
with worsening RV function likely exists 
in males despite females having a signifi-
cantly higher PVR. 47 

  Though numerous physiologic and mo-
lecular mechanisms overlap between SDB 
and PH, their links to exercise intolerance 
remain unclear. Much more dedicated 
clinical and mechanistic study is needed.  

 EXERCISE IMPAIRMENT IN  
SDB AND PH
 A growing body of evidence links 
SDB, particularly OSA, to exercise 
impairment. A recent meta-analysis 
demonstrated that, compared with 

healthy controls, subjects with OSA had 
decreased mean peak oxygen consump-
tion (VO2 max), 48  a parameter considered 
an overall measure of health and one 
that is widely associated with mortality 
in health and disease. Although re-
duced VO2 max is not observed across 
all studies examining cardiopulmonary 
exercise testing in OSA, 49  other physi-
ologic changes with exercise, including 
decreased peak heart rate and increased 
diastolic blood pressure, are consistently 
observed in patients with OSA. 48 ,  50 ,  51  
Some of the physiologic abnormalities 
characteristic of pulmonary vascular 
disease, such as decreased ventilatory 
efficiency (VE/VCO2 ) and reduced oxy-
gen pulse, 52  have not been demonstrated 
in OSA. 48 ,  50  Although the cardiopulmo-
nary mechanisms of exercise impairment 
are different between PH and OSA, 
it is easy to postulate that these might 
combine to worsen exercise impairment 
where PH and OSA coexist. However, 
data examining the impact of OSA on 
exercise specifically in PH are more 
limited. In a heterogeneous PH popu-
lation, those with OSA were older and 
had worse resting oxygenation that those 
without OSA, but no differences in any 
exercise parameters were found, includ-
ing six-minute walk distance (6MWD), 
VO2 max, and VE/VCO2 .

 53  Most other 
studies characterizing OSA in PH have 
less robust exercise data and have not 
consistently demonstrated that OSA 
reduces 6MWD in PH. 54 –  56 

  With all these data, it is challenging 
to know if the association between OSA 
and exercise impairment is causal or if 
body mass index (BMI), comorbidities, 
and baseline levels of physical activity 
confound the relationship. In a large 
sleep cohort, increased reported amount 
of exercise was associated with a reduced 
degree of SDB, even after adjustment for 
age, sex, and body habitus. 57  In a recent 
study of 450 precapillary PH patients, 
those with OSA had a reduced 6MWD 
but were older, had more comorbidities 
(such as obesity, hypertension, diabetes, 
and coronary artery disease), were more 
likely to have left heart abnormalities on 
echocardiogram, and substantially more 
likely to have a diagnosis of atypical 
PAH. 55  However, the association be-
tween OSA and atypical PAH remained 

  
 Figure 1:    Shared molecular mechanisms of Group 3 pulmonary 
hypertension (PH) and sleep disordered breathing (SDB). TGF-β 
signaling and hypoxia inducible factor-1 alpha (HIF-1α) both activate 
VEGF expression which can lead to increased cell growth, differentiation, 
and proliferation. MicroRNAs (miRs) can regulate gene expression and 
prevent these downstream effects in pre-clinical models. HIF-1α is also 
theorized to play a significant role in mitochondrial dysfunction in both 
SDB and PH, though the exact mechanisms have yet to be clearly 
elucidated. Figure adapted from Singh et al. Circ. Res. 2021. 70  
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even after adjustment for age, sex, and 
BMI. Further examination of the inter-
play between OSA, comorbidities, and 
exercise is needed, particularly given the 
increasing recognition of comorbidities 
and the atypical phenotype in PAH.  

 THERAPEUTIC 
INTERVENTIONS
 Some, albeit limited, data examine the 
impact of exercise on SDB or the effects 
of treatment for SDB on exercise perfor-
mance. Individual studies have demon-
strated aerobic exercise can reduce the 
severity of OSA. 58 ,  59  Pooled estimates 
from meta-analyses demonstrated regi-
mented exercise improves AHI, VO2 max, 
and measures of daytime sleepiness and 
sleep quality with little 60  or no 61  change 
in BMI. The exercise regimens in these 
studies are typically aerobic exercise tar-
geting anaerobic threshold, although one 
analysis found a combination of resistive 
and aerobic exercise resulted in greater 
improvement in the OSA severity. 61  
Notably, these studies routinely exclude 
patients with significant cardiopulmo-
nary disease, including PH.

 Emerging data show that treatment 
for SDB, particularly positive airway 
pressure, can improve exercise per-
formance in patients both with and 
without cardiopulmonary disease and 
PH. Several small studies have shown 
that short-term CPAP improves exercise 
capacity in OSA without significant car-
diopulmonary comorbidities. 62 –  64  Maeder 
et al. 65  found that effective longer-term 
CPAP use in otherwise healthy patients 
with newly diagnosed OSA improved 
VO2 max and heart rate reserve. Interest-
ingly, the improvement in VO2 max was 
seen primarily in those with mild- 
moderate OSA, which may have been 
explained by increased effort during 
the cardiopulmonary exercise testing 
(CPET) compared with those with se-
vere OSA. More recent work examined 
the effects of CPAP on exercise capacity 
in patients with cardiopulmonary co-
morbidities and PH. In moderate-severe 
OSA patients with some cardiovascular 
comorbidities (hypertension and isch-
emic heart disease), 8 weeks of CPAP 
improved VO2 max, minute ventilation, 
and peak oxygen pulse. 66  Sykes et al. 67  
examined the effects of OSA and PH on 

exercise capacity in patients under going 
cardiac rehabilitation, indicated for 
significant cardiac disease, mostly heart 
failure with reduced ejection fraction 
and sequelae of coronary artery disease. 
Patients with OSA were more likely to 
have PH (defined by echocardiography), 
and while improvements in exercise 
capacity were not different between 
those with and without PH, patients 
with PH and OSA treated with CPAP 
had greater improvements in exercise 
capacity. Limited data also suggest that 
positive pressure therapy in patients with 
CPAP and PH can lower pulmonary 
artery pressures (as measured by echo-
cardiography) 68 ,  69 ; however, more robust 
studies, including those using invasive 
hemodynamics, are required.

 Although the current research is 
limited, effects of exercise on SDB 
are likely beneficial, and conversely, 
SDB treatment may improve exercise 
performance. The magnitude and 
longer-term clinical significance of 
these effects and in which patient pop-
ulations they are the most impactful 
remain to be determined.  

 PRACTICAL CONSIDERATIONS 
FOR EXERCISE AND SDB IN PH
 Screening for SDB is standard when 
evaluating a patient for PH and exercise 
intolerance 1 ; based on epidemiologic 
evidence suggesting increased risk of 
severe disease, special attention should 
be given to patients with risk factors 
for OHS such as obesity, hypertension, 
and diabetes. In patients whom SDB is 
suspected, standard diagnostics includ-
ing polysomnography are sufficient 
to detect the disease. Assessments of 

exercise capacity are typically performed 
by 6MWT in most PH centers. Al-
though CPET is not uniformly used for 
the diagnosis and management of PH, 
it may be particularly helpful to assess 
cardiovascular and pulmonary respons-
es to exercise when OSA and PH are 
clinically suspected. Some differences in 
CPET may be useful in differentiating 
between circulatory (Group 1 PAH) and 
ventilatory (Group 3 PH) limitations to 
exercise (Table  1 ). Guideline recommen-
dations 1  and common clinical practice 
are to treat SDB in PH and refer PH 
patients for supervised rehabilitation 
programs. While these may be viewed 
as occurring in parallel, the mechanistic 
and clinical links between SDB and ex-
ercise would seem to suggest that these 
treatments might be synergistic in PH.   

 CONCLUSIONS
 Exercise intolerance exists in both SDB 
and PH; however, the causality of these 
relationships, the mechanisms that 
underpin them, and the directions in 
which they occur remain understudied. 
Despite this, many of the pathophysio-
logical mechanisms that drive SDB and 
PH clearly overlap, including systemic 
inflammation, oxidative stress, metabolic 
dysfunction, and endothelial dysfunction. 
Exercise intolerance occurs commonly in 
patients with SDB with or without PH, 
and both treatment of SDB and exercise 
training can improve clinical outcomes. 
The precise benefits, long-term thera-
peutic effects, and populations which find 
the most benefit have yet to be elucidat-
ed. Future work should focus on deep 
characterization of biological mechanisms 
that contribute to exercise  intolerance 

  Table 1.    Cardiopulmonary Exercise Test (CPET) Criteria That May Differentiate Group 1 PAH 
From Group 3 PHa  

Criteria favoring Group 1 PAH Criteria favoring Group 3 PH

Features of circulatory limitation to exercise:
•        Preserved breathing reserve 
•       Reduced O2  pulse 
•       Low CO/VO2  slope 
•       Mixed venous oxygen saturation at lower 

limit
•       No change or decrease in PaCO2  during 

exercise

Features of ventilatory limitation to exercise:
•        Reduced breathing reserve 
•       Normal O2  pulse 
•       Normal CO/VO2  slope 
•       Mixed venous oxygen saturation above 

lower limit
•       Increase in PaCO2  during exercise  

  Abbreviations: CPET = cardiopulmonary exercise test; PAH = pulmonary arterial hypertension; 
PH = pulmonary hypertension. 

  a Adapted from Nathan et al. Eur Respir J . 2019;53(1):1801914. 2    
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in SDB and PH and careful study of 
longitudinal relevant clinical outcomes 
in well-defined populations so treatment 
recommendations regarding exercise in 
these conditions can be made clear.    
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