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Pulmonary arterial hypertension (PAH) is a devastating disease mediated by 
vasoconstriction and vascular remodeling of the pulmonary vasculature. Current 
therapies target the imbalance of vasoconstrictors and vasorelaxants in 3 pathways: 
nitric oxide, prostacyclin, and endothelin. While these have extended lifespans for 
PAH patients, significant morbidity and mortality remains. Notably, the progress 
in PAH therapy for over a decade has utilized these same 3 pathways. Fortunately, 
several new treatment options utilizing different mechanisms are emerging and will 
be reviewed here.

INTRODUCTION
Pulmonary arterial hypertension (PAH) 
is a result of complex pathologic process-
es culminating in a progressive, incur-
able disease characterized by elevated 
pulmonary vascular resistance and right 
ventricular (RV) dysfunction. Elevated 
pulmonary afterload derives from both 
increased vasoconstrictive tone and de-
ranged vascular remodeling that has been 
likened to a pseudomalignant phenotype. 
Significant efforts have been made to 
understand the underlying pathophysio-
logic processes in the quest for treatment 
options. Currently approved therapies 
target 3 pathways—nitric oxide, pros-
tacyclin, and endothelin—as patients 
with PAH have chronic upregulation of 
vasoconstrictors such as endothelin and 
chronic deficiency in vasodilators such as 
nitric oxide and prostacyclins. However, 
significant pulmonary vascular disease 
remains, reflected clinically with an 
improved but persistently high mortal-
ity, particularly in those with high-risk 
disease.1 Fortunately, additional path-
ways involved in the disease have been 
elucidated and are now candidates for 

targeted intervention. Many emerging 
pharmaceuticals target pulmonary vascu-
lar fixed remodeling mediated by imbal-
anced pro-proliferative and antiapopto tic 
pathways (Figure 1). These potential 
treatments, together with current ther-

apies, may provide synergistic effects to 
improve outcomes for our PAH pa-
tients. At the same time, ideally we will 
continue to advance our understanding 
of precision-based treatments in PAH 
and move toward the “right drug(s)” for 
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Figure 1: Mechanisms of action of emerging PAH therapies.
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the “right patients” to minimize costly 
and burdensome regimens and maxi-
mize outcomes and quality of life for 
our patients. It is equally important to 
validate surrogate endpoints that reflect 
patient-centered outcomes in PAH trials 
alongside the discovery of novel mecha-
nistic targets. Readily available PAH risk 
scores have been suggested as surrogate 
outcomes in randomized controlled trials 
of PAH but further validation is required 
(data unpublished). Identification of 

alternative validated surrogates is war-
ranted as the efficacy of these emerging 
potential therapeutics is studied. We will 
review some of the most promising novel 
pharmaceuticals currently on the horizon 
and in clinical trials (Table 1).

BONE MORPHOGENETIC 
PROTEIN SIGNALING 
MODULATORS
Disruptions in signaling of the trans-
forming growth factor–β (TGF-β) 

superfamily contributes significantly to 
the dysregulated vascular proliferation of 
PAH. Germline mutations specifically 
in the TGF receptor of bone morphoge-
netic protein receptor type 2 (BMPR2) 
and its downstream signalers are the 
most common genetic cause of heritable 
PAH,2 with BMPR2 itself playing a 
critical gatekeeping role.3 Bone morpho-
genetic protein signaling and function is 
also decreased in nonheritable PAH.4,5 
Downstream of BMPR2, evidence 

Table 1. Summary of Selected New Potential Drugs in the Treatment of PAH

Abbreviations: TGF indicates transforming growth factor; BMP, bone morphogenetic protein; 6MWD, 6-minute walk distance; ECG, 
electrocardiogram; PVR, pulmonary vascular resistance; BET, bromodomain and extraterminal motif; TAPSE, tricuspid annular plane systolic 
excursion; DHEA, dehydroepiandrosterone, RV, right ventricle; CMRI, cardiac magnetic resonance imaging; eNOS, endothelial nitric oxide synthase.
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suggests an imbalance of SMAD sig-
naling with underactive antiproliferative 
SMAD 1/5/8 signaling and overactive 
pro-proliferative SMAD 2/3.6

Sotatercept
The recombinant fusion protein sotater-
cept targets this deranged signaling by 
preferentially inhibiting the pro-prolif-
erative SMAD2/3 pathway. Sotatercept 
has been previously studied in condi-
tions characterized by TGF-β signaling 
dysregulation, including multiple my-
eloma and myelodysplastic syndrome.7,8 
The recent phase II PULSAR trial 
evaluated sotatercept’s efficacy in PAH 
patients on stable background therapy, 
at doses of 0.3 mg/kg and 0.7 mg/kg 
for 24 weeks.9 The least-squares mean 
difference of change in pulmonary vas-
cular resistance (PVR) in the sotatercept 
0.3-mg/kg group as compared with the 
placebo group was −145.8 dyn·sec·cm−5 
(95% confidence interval [CI]: −241.0 
to −50.6 dyn·sec·cm−5, P = .003), while 
that for the sotatercept 0.7-mg/kg 
group compared with placebo group was 
−239.5 dyn·sec·cm−5 (95% CI: −329.3 to 
149.7 dyn·sec·cm−5; P < .001). Secondary 
endpoints included improved 6-minute 
walk distance (6MWD) with least-
squares mean difference for the 0.3-mg/
kg sotatercept participants compared to 
placebo participants of 29.4 m (95% CI: 
3.8 to 55.0 m) and that of the 0.7-mg/
kg group compared to placebo at 21.4 
m (95% CI: −2.8 to 45.7 m). Addition-
ally, N-terminal pro-B-type natriuretic 
peptide (NT-proBNP) decreased with 
least-squares mean difference between 
the sotatercept 0.3-mg/kg group and 
placebo group of −931.5 pg/mL (95% 
CI: −1353.2 to −509.7 pg/mL) and of 
the sotatercept 0.7-mg/kg group, −651.0 
pg/mL (95% CI: −1043.3 to −258.7 pg/
mL).

Multiple phase 3 trials of sotatercept 
in patients with PAH with varying 
disease duration and risk profiles are 
currently ongoing. Early results from 
STELLAR, a randomized, multi-center 
study of sotatercept in patients with 
PAH with World Health Organiza-
tion (WHO) functional class (FC) II 
or III on background PAH therapies, 
were recently reported as meeting the 
study’s primary endpoint of improve-

ment in 6MWD, along with 8 of 9 
secondary endpoints including time to 
clinical worsening, a multicomponent 
improvement from baseline, mainte-
nance or improvement in WHO FC, 
change from baseline PVR, change from 
baseline in NT-proBNP, maintenance or 
improvement to low risk score, change 
from baseline in physical impacts, and 
change from baseline cardiopulmonary 
symptoms.10, 11 Additional active phase 
III trials of sotatercept include SO-
TERIA (NCT04796337),12 evaluating 
long-term efficacy and safety; ZE-
NITH (NCT04896008),13 investigating 
efficacy in advanced WHO FC III or 
IV patients on maximally tolerated 
background therapy; and HYPERION 
(NCT04896008)14, studying the drug’s 
efficacy in incident PAH patients.

Elaf in
Increased elastase activity has been 
demonstrated in the pulmonary arteries 
of experimental PAH models with deg-
radation of elastin, a structural protein 
that contributes to pulmonary vascular 
integrity and elastance. Elastin deg-
radation is associated with pulmonary 
artery smooth muscle cell (PASMC) 
proliferation.15 Elafin is a naturally oc-
curring elastase inhibitor with additional 
antimicrobial and anti-inflammatory 
properties. Treating pulmonary artery 
endothelial cells from PAH patients 
with elafin led to an increase in BMP 
signaling and a reduction in neointimal 
formation in cultured pulmonary artery 
endothelial cells.16 In the Sugen-hy-
poxia rat model of PAH, elafin reversed 
pulmonary vascular occlusive changes 
and normalized RV pressure.16,17 These 
data suggest that elafin may augment 
BMPR2 signaling in PAH as well as 
increase expression of apelin, a target of 
BMPR2 signaling. A small phase I trial 
(NCT03522935) in healthy patients 
treated with elafin is complete with 
plans for a phase 2 proof-of-concept 
study18.

Tacrolimus
Tacrolimus, a calcineurin inhibitor 
used routinely for immunosuppression 
in transplant patients, also activates 
BMPR2 signaling.19 In animal models, 
low-dose tacrolimus increased BMPR2 

signaling in pulmonary artery endotheli-
al cells and reversed pulmonary vascular 
remodeling in a murine BMPR2 knock-
out.19 A small phase 2a trial of tacroli-
mus at 3 different target levels in PAH 
patients on background therapy showed 
no improvement in 6MWD or RV 
function, but may be efficacious in select 
patients.20 Nonetheless, a larger phase II 
study is being planned to determine the 
efficacy of tacrolimus more definitively 
in PAH.

TYROSINE KINASE PATHWAY
Aberrant proliferation of pulmonary 
vascular smooth muscle cells has been in 
part attributed to growth factors such as 
platelet-derived growth factor (PDGF), 
a potent PASMC mitogen21 that is 
increased in PAH patients.22 PDGF re-
ceptors (PDGFRs) belong to a family of 
tyrosine kinase receptors, and preclinical 
data have demonstrated that tyrosine 
kinase inhibitors both attenuate pulmo-
nary vascular remodeling through PDG-
FR inhibition but also directly relax the 
pulmonary vasculature.23 As such, several 
tyrosine kinase inhibitors are now under 
clinical investigation for PAH.

Imatinib
Imatinib, a Bcr-Abl inhibitor original-
ly developed to treat chronic myeloid 
leukemia, also inhibits PDGF. Imatinib 
potently inhibited PDGF-dependent 
PASMC proliferation, with near full re-
versal of pulmonary hypertension in the 
monocrotaline and hypoxic rat model.24 
Further in vitro data demonstrated that 
imatinib exerted proapoptotic effects 
in PDGF-stimulated PASMCs from 
idiopathic PAH patients.25 A phase II 
study of imatinib versus placebo found 
improvements in PVR and cardiac 
output specifically in patients with more 
significant hemodynamic impairment 
(PVR ≥ 1000 dyn·sec·cm−5), suggesting 
a role as add-on therapy for a subset of 
advanced PAH patients.26 The compel-
ling preclinical data and phase II trial 
ultimately led to evaluation of imatinib 
in the IMPRES trial, which enrolled 
subjects on at least dual background 
PAH therapies. At 24 weeks, the mean 
placebo-corrected treatment effect on 
6MWD was 32 m (95% CI: 12 to 52 
m; P = .002) and PVR decreased by 379 
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dyn·sec·cm−5 (95% CI: −502 to −255 
dyn·sec·cm−5; P < .001, between-group 
difference); however, WHO FC, time to 
clinical worsening, and mortality did not 
differ between the groups.27 Serious ad-
verse effects were noted in the imatinib 
group compared to placebo (44% versus 
30%), particularly subdural hematomas, 
which in addition to significant dropout 
due to intolerances tempered enthusiasm 
for imatinib. At present, the ongoing 
phase II PIPAH trial (NCT04416750)28 
aims to identify the highest tolerated 
dose of oral imatinib, assess efficacy as 
measured by PVR reduction, and identi-
fy the patients most likely to respond via 
analyses of plasma proteins and genes, 
particularly those encoding PDGF. A 
phase III study of an additional oral for-
mulation of imatinib with enteric coat-
ing meant to mitigate gastrointestinal 
side effects is also planned.29 Concur-
rently, IMPAHCT (NCT05036135) is a 
phase IIb/III trial of dry powder inhaled 
form of imatinib, which will identify 
the optimal dose and examine effects of 
inhaled imatinib on 6MWD and PVR 
at 24 weeks.30

Seralutinib
Seralutinib, which was specifically devel-
oped to target several tyrosine kinase in-
hibitors implicated in PAH pathogenesis 
including PDGFRα/β, colony stimulat-
ing factor 1 receptor, and c-KIT while 
also increasing BMPR2, has reversed 
pulmonary vascular remodeling and 
improved hemodynamics in 2 preclinical 
pulmonary hypertension models.31 The 
phase II TORREY trial of seralutinib 
delivered by dry powder inhaler was 
recently completed with early reports of 
modest improvements in the primary 
endpoint of PVR at 24 weeks (14.3% 
placebo-corrected improvement; P = .03) 
with the secondary endpoint of 6MWD 
favoring seralutinib as well.32, 33 Find-
ings were more striking in subgroup 
analyses of more symptomatic WHO 
FC III patients for the seralutinib arm 
versus placebo (21% reduction in PVR, 
P = .04; 37-m improvement in 6MWD, 
P = .048), and in patients with interme-
diate- or high-risk REVEAL 2.0 scores 
(23% reduction in PVR, P = .01; 22-m 
increase in 6MWD, P = .25) for the 
seralutinib arm versus placebo.

BROMODOMAIN PROTEINS
Bromodomains (BRDs) are epigenetic 
drivers of the BRD and extraterminal 
motif protein family that regulate gene 
transcription. BRD and extraterminal 
motif inhibitors may also exert favor-
able effects on the myocardium and 
decreased hospitalizations in patients 
with left heart disease following acute 
coronary syndrome.34 BRD4 specifically 
can inhibit apoptosis, promote hyper-
proliferation, and stimulate a switch into 
a proinflammatory phenotype and as 
such has been implicated in cancer.35-37 
BRD inhibitors have thus been identi-
fied as treatment options for cancers.38 
Given the cancer-like proliferation of 
PASMCs in PAH, it is not surprising 
that BRD4 has also been identified as a 
contributor to the proliferation in PAH, 
with significant upregulation detected 
in human pulmonary artery tissue.35. 
Accordingly, inhibition of BRD4 revers-
es pulmonary vascular remodeling and 
improves hemodynamics in preclinical 
pulmonary hypertension models.35 Sim-
ilar findings were observed in the Phase 
I APPROACH-p trial of the BRD4 in-
hibitor apabetalone, with decreased PVR 
(−140 dyn·s·cm−5; 95% CI: −200 to −79 
dyn·sec·cm−5) noted in 7 PAH patients 
treated for 16 weeks.39 Improvements 
in cardiac output (+0.73 L/min; 95% 
CI: −0.22 to +1.68 L/min) and stroke 
volume (+8 mL; 95% CI: −4 to +20 mL) 
were also noted with apabetalone. The 
larger phase II APPROACH-2 trial 
(NCT04915300) will confirm or refute 
these findings.40

SEX HORMONES
Estrogen
Despite early identification of female 
sex as a major risk factor for PAH41,42 
and subsequent intense investigation 
into sex hormones and their contribu-
tion to PAH pathobiology, the exact 
role of estrogen remains incompletely 
defined as reviewed more thoroughly 
in other works.43–46 Briefly, it is clear 
that despite female predominance, once 
PAH is established estrogen provides 
protective effects on RV function,47,48 
allowing female patients better prog-
noses.33,34,41,42,47,49 However, the role 
of estrogen signaling and metabolism 
in the pulmonary vasculature itself is 

complex. Beneficial effects including 
vasodilation and angiogenesis are noted 
in some animal studies,50,51 but other 
studies report that estrogen promoted 
destructive vascular remodeling.52,53 
Clinical evidence supports a deleterious 
relationship with higher circulating es-
trogen noted in PAH patients, including 
men.54 Furthermore, in animal models 
of PAH, inhibiting estrogen receptors 
with tamoxifen or inhibiting conversion 
of androgens to estrogen with anastra-
zole reversed PAH55,56 A small phase 
II clinical trial showed that anastrazole 
decreased circulating estrogen by 40% 
and increased 6MWD.57 This launched 
the PHANTOM trial (NCT03229499) 
now underway examining the effects of 
anastrazole in postmenopausal wom-
en and men with PAH.58 Whether 
inhibition of estrogen receptors with 
tamoxifen may benefit PAH patients 
is also being evaluated with the sin-
gle-center Phase II T3PAH trial 
(NCT03528902).59

Dehydroepiandrosterone
The precursor to both estrogen and 
androgens, dehydroepiandrosterone 
(DHEA) prevented and treated PAH 
and RV dysfunction in animal models.60 
Clinically, lower DHEA is associated 
with higher risk of PAH in men46 and 
increased risk and severity in women.61 
The consistent data suggesting benefit 
of DHEA in PAH may be explained 
by DHEA-mediated enhanced endo-
thelial nitric oxide synthesis or through 
direct cardioprotective effects. The 
single-center crossover trial EDIPHY 
(NCT03648385) is currently testing 
DHEA efficacy in PAH patients by 
measuring RV longitudinal strain.62

EXPLORATORY THERAPIES
Beyond typical pharmacologic options, 
other novel approaches are currently 
under investigation for this complex 
and morbid disease. As specific gene 
mutations are implicated in heritable 
PAH and account for 6% to 10% of all 
PAH, gene therapy provides an attrac-
tive approach to directly correct aber-
rant genes and restore balance between 
proliferation and apoptosis. Preclinical 
pulmonary hypertension models have 
proven amenable with improvements in 
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pulmonary vascular remodeling via viral 
transfection endotracheally and intrave-
nously.63–65 Work in experimental models 
is ongoing to determine ideal and effec-
tive gene therapy delivery methods.

Stem or progenitor cell therapy may 
offer similar direct restoration of pulmo-
nary vasculature homeostasis. With the 
abnormal endothelial dysfunction and 
hyperproliferation of PASMCs, regen-
erative cell treatment could interfere 
and restore vasculature architecture. 
Endothelial progenitor cells (EPCs) 
appear protective in PH animal models, 
including specifically with BMPR2-aug-
mented EPCs, which improved mean 
pulmonary artery pressures and RV 
hypertrophy in monocrotaline-induced 
models.66 Small pilot randomized con-
trolled trials have demonstrated safety 
and efficacy of stem cell therapy in 
humans and a 2019 meta-analysis of 16 
small clinical trials with stem cell thera-
py in PAH patients revealed that despite 
heterogeneity in findings, weight-
ed-means differences indicated improve-
ments in RV systolic pressure, mean 
pulmonary artery pressure, and mean 
RV pressure with P values all < .001 in 
patients treated with stem cells.67 The 
PHACeT study in 2015 reported that 
when treated with 3 doses of enhanced 
endothelial nitric oxide synthase EPCs, 
PAH patient demonstrated improved 
hemodynamics in the short term with 
good tolerance; however, findings were 
not sustained at 3 and 6 months,68 de-
spite prior EPC data showing sustained 
hemodynamic and exertional effects at 
3 months.69 A recent landmark report 
described the use of human umbilical 
cord mesenchymal stems cells to treat a 
child with heritable PAH and hereditary 
hemorrhagic telangiectasia which im-
proved clinical parameters at 6 months.70 
Currently the phase II SAPPHIRE 
study (NCT03001414) is recruiting 
and aims to assess safety and efficacy of 
monthly administration of autologous 
EPCs transfected with human endothe-
lial nitric oxide synthase in severe PAH 
patients.71

Finally, investigation into the mi-
crobiome may elucidate novel mecha-
nisms and therapeutic targets in PAH. 
Compared to controls, PAH patient 
microbiomes demonstrated decreased 

alpha diversity with distinct signatures 
even from unaffected family members, 
and enrichment of bacteria associated 
with the proinflammatory metabo-
lite trimethylamine oxide.72,73 Species 
associated with trimethylamine oxide 
were increased as was serum trimethyl-
amine oxide in high-risk PAH patients, 
whereas species associated with anti-in-
flammatory metabolites were reduced. 
Guided by this data, a Phase I trial 
(NCT04884971) is currently evaluating 
the safety of microbiome transplant in 
PAH patients.74

CONCLUSION
Despite significant progress in PAH 
therapeutics over the last 2 decades, 
innovative treatments are needed to 
ameliorate morbidity and mortality in 
this progressive deadly disease. Beyond 
our current arsenal of treatments, BMP 
signaling, tyrosine kinase signaling, 
BRD proteins, sex hormones, and other 
more novel approaches such as gene 
therapy targeting pulmonary vascular 
remodeling are in varied stages of devel-
opment. With continued scientific rigor 
used to explore new signaling pathways 
and mechanisms, we are one step closer 
to halting, if not reversing, this devastat-
ing disease.
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