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Conveniences of modern travel allow for an increasing number of people to sojourn 
to mountainous, high-altitude locations for work and/or pleasure. Travel to these 
types of locations places unique stressors on the human body and, more specifically, 
the cardiovascular and pulmonary systems since ambient oxygen content declines at 
altitude. The physiologic response to hypoxia is a highly dynamic process that begins 
immediately and continues to evolve from acute (hours to days) to chronic (days to 
weeks) time periods. Furthermore, sojourns to hypoxic locations frequently involve 
exercise, which places additional strain on the heart and lungs. The aim of this re-
view is to emphasize clinically relevant physiologic responses that occur, both acutely 
and chronically, after travel to high-altitude locations.

INTRODUCTION
More than 100 million individuals travel 
to high-altitude environments per year 
for work or pleasure.1–3 Reductions in the 
partial pressure of ambient oxygen initiate 
a cascade of physiologic responses, which 
place unique stressors on the cardio-
vascular and pulmonary systems. These 
stressors are accentuated by attempts to 
exercise. Information available on the 
effects of hypoxia on human physiology, 
both at rest and with exercise, is derived 
primarily from healthy individuals. Nev-
ertheless, the prevalence of cardiovascular 
disease (∼18 million), hypertension (∼108 
million), and heart failure (∼6 million) in 
the United States is high, and many of 
these individuals, who have abnormal sea 
level (SL) hemodynamics, may experience 
much larger perturbations in cardiopul-
monary and exercise hemodynamics than 
healthy populations. In this review, cardiac 
and pulmonary responses to hypoxia are 
emphasized, and exercise physiology at 
altitude is highlighted.

CARDIOVASCULAR, 
PULMONARY, AND 
RESPIRATORY RESPONSES TO 
HYPOXIA
The hemodynamic response to hypox-
ia is highly dynamic and evolves from 

acute (hours to days) to chronic (days to 
weeks) exposure. Acutely, the cardiovas-
cular response to hypoxia is dominated 
by a marked increase in sympathetic 
nerve activity (SNA).4–8 Microneurog-
raphy studies of healthy humans have 
demonstrated that SNA increased from 
SL values of 27.1 ± 2.9 bursts/min to 
36.4 ± 2.6, 39.1 ± 3.1, and 40.2 ± 4.2 
bursts/min at 4000, 5000, and 6000 m, 
respectively.7 This increase in sympa-
thetic tone results from hypoxia-induced 
activation of peripheral chemoreceptors 
and acutely increases heart rate (HR), 
stroke volume (SV), cardiac output 
(Qc), and muscle blood flow compared 
with levels encountered at SL.4,5 As 
the body adapts to hypoxia over several 
days to weeks, Qc falls in response to 
a decline in SV.4–6,9 This reduction in 
SV occurs over the first several days of 
altitude exposure and stabilizes after ∼1 
week.6,10,11

Hypoxic pulmonary vasoconstriction 
leads to an acute increase in pulmonary 
arterial pressures (PAPs), which increase 
in proportion to altitude exposure.12–16 
In a study of healthy mountaineers, 
pulmonary artery systolic pressure, de-
termined by echocardiography, increased 
from 22 ± 3 mm Hg at SL to 33 ± 6 
mm Hg after 4 hours of exposure to a 

simulated height of 4500 m (fraction 
of inspired oxygen [FIO2] = 0.12).15 
In another study involving invasive 
hemodynamic assessment by pulmo-
nary arterial catheterization of healthy 
volunteers, mean PAP increased from 
14 ± 1 mm Hg at a baseline altitude 
of 490 m to 22 ± 1 mm Hg after only 
10 minutes of breathing hypoxic gas 
(FIO2 = 0.12).13 At more extreme 
altitudes, greater increases in PAP have 
been observed.16 In Operation Everest 
2, healthy volunteers experienced large 
increases in mean PAP from 15 ± 1 
mm Hg to 34 ± 3 mm Hg over a 40-
day simulated ascent to 8840 m (sum-
mit of Mount Everest), and pulmonary 
vascular resistance increased from 1.2 ± 
0.1 to 4.3 ± 0.3 Woods units.16

Ventilation increases dramatically 
after hypoxic exposure. For example, 
among healthy males, resting minute 
ventilation increased from 7.1 ± 0.3 
L/min at SL to 11.8 ± 0.5 L/min on 
the first day of exposure to 3110 m.17 
This increase in ventilation continues 
to rise over time with ongoing hypoxic 
exposure18 and is relevant insomuch as a 
significant amount of oxygenated blood 
may be diverted to supply respiratory 
muscles to support the increased work 
of breathing, thereby causing a respira-
tory “steal” phenomenon which contrib-
utes to reductions in exercise capacity at 
altitude.18,19
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CARDIOPULMONARY 
HEMODYNAMICS OF EXERCISE 
AT HIGH ALTITUDE
One critical relationship in exercise 
physiology pertains to oxygen uptake 
(VO2) and Qc, such that Qc increases 
∼6 L/min for every 1 L/min rise in 
VO2.

20–22 During exercise at high alti-
tude, this relationship between Qc and 
VO2 is preserved.23 However, maximal 
oxygen uptake (VO2Max) declines in 
proportion to the altitude at which 
exercise is undertaken. Specifically, VO-
2Max decreases by ∼1% for every 100-m 
increase in altitude above 1500 m.24–26 
Ventilatory threshold, a marker of sus-
tainable workload, occurs at HRs similar 
to SL but at lower workloads.26,27

During acute exposure to high alti-
tude, exercise Qc may be higher than SL 
values in response to the aforementioned 
rise in sympathetic tone. However, as the 
body acclimates, exercise Qc typically 
declines compared with SL values.23 
Notably, this reduction in Qc is not a 
result of hypoxia-induced left ventricular 
(LV) dysfunction. In Operation Everest 
2, it was found that SV was maintained 
for any given pulmonary capillary wedge 
pressure, indicating that LV contractility 
is preserved even up to extreme altitudes 
of 8400 m.9 At any level of work, HR is 
higher at altitude than at SL, but maxi-
mal HRs achieved at altitude are lower 
than exercise at SL.28 Stroke volume at 
all levels of exercise is reduced compared 
with values during exercise at the same 
workload at SL.28

Exercise PAP at altitude is higher 
than levels observed at SL and there-
fore may impact right ventricular (RV) 
function,23 yet less is known about RV 
performance during exercise at altitude. 
The majority of studies evaluating 
cardiovascular function have incorpo-
rated echocardiography,23,29–31 and it is 
unclear whether observed changes in 
noninvasive metrics of RV performance 
(eg, strain, tricuspid annular plane 
systolic excursion [TAPSE]) result from 
changes in loading conditions or are a 
reflection of overt dysfunction.29 In one 
of these studies, RV longitudinal strain 
at 5050 m was reduced compared with 
SL values, but this decrement in strain 
was attributed to reductions in RV vol-
umes.29 In Operation Everest 2, which 

incorporated pulmonary arterial cath-
eters, right atrial pressure (a surrogate 
marker of RV function) was reduced 
during rest and exercise at altitude, and 
based on this finding, it was concluded 
that RV function is preserved.9,16 Nev-
ertheless, in placebo controlled studies 
using either sildenafil32 or bosentan,33 
pulmonary vasodilator administration 
with normobaric hypoxia resulted in a 
reduced PAP and pulmonary vascular 
resistance and was associated with an 
improved maximal exercise workload 
(FIO2 = 0.10)(26) and a 30% increase in 
VO2Max (FIO2 = 0.12)(27).

Additionally, there are data to sug-
gest that RV function may decline over 
time in response to chronic (eg, weeks) 
exposure to hypoxia.29 Hypoxia-medi-
ated augmentations in PAP lead to an 
increase in RV afterload.6,34–40 In a study 
of healthy individuals, RV end-diastolic 
volume increased from 52 ± 12 to 61 
± 25 mL at SL to 5085 m, respectively, 
which coincided with increases in systol-
ic PAP (13.1 ± 5.9 versus 26.6 ± 10.8 
mm Hg).37 In another study, TAPSE de-
clined from 2.9 ± 0.3 to 2.3 ± 0.3 from 
SL to 5050 m.29 Finally, pharmacologic 
reductions of PAP by administration of 
sildenafil led to an increase in LV SV.39 
In total, these data suggest that, as PAP 
(and hence, RV afterload) rises, RV 
contractility declines over time, and this 
reduction in RV function compromises 
LV SV. Further research incorporating 
invasive and comprehensive assessments 
of RV function—such as has recently 
been performed in patients with pulmo-
nary arterial hypertension,41 heart failure 
with preserved ejection fraction,42 heart 
failure patients supported by LV assist 
devices,43 and even healthy individuals 
exercising at SL40—is necessary to char-
acterize the effects of acute and chronic 
altitude exposure on resting and exer-
tional RV performance and how decre-
ments in RV function may influence LV 
SV, Qc, and exercise capacity overall.

A minority of individuals experience 
subacute mountain sickness after several 
months' exposure to hypoxia at altitude. 
Subacute mountain sickness in humans 
has been compared to Brisket disease 
in cattle living above 3000 m, which 
was reported well over 100 years ago 
and presents as edema in the neck and 

chest.6 In humans, this syndrome was 
described in soldiers who participated in 
vigorous exercises at altitudes of 5800–
6700 m for up to 6 months.44 These 
individuals had evidence of RV failure, 
including generalized edema, ascites, and 
pericardial effusion. On echocardiog-
raphy, these soldiers displayed evidence 
of RV enlargement, which normalized 
on repeat assessment several weeks after 
return to low altitude.44 Based on these 
types of observations, it has been pro-
posed that this disease entity be termed 
“high-altitude right heart failure.”6,45

CONCLUSIONS
Sojourns to mountainous locations lead 
to acute and chronic stressors on the 
cardiovascular and pulmonary systems. 
These stressors result primarily from 
reductions in ambient oxygen content, 
which acutely increases sympathetic 
tone through activation of peripher-
al chemoreceptors and increases PAP 
through hypoxic pulmonary vasocon-
striction. Hypoxia-mediated increases in 
RV afterload (ie, PAP) may lead to RV 
enlargement and compromise resting 
and exertional RV performance. Overt 
RV failure appears to be quite rare and 
occurs after several months of exposure 
to altitudes above 5500 m. Compared 
to SL performance, exercise capacity 
declines linearly in proportion to the 
level of altitude.
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