
adph-18-01-02  Page 19  PDF Created: 2019-3-25: 10:25:AM

 Advances in Pulmonary Hypertension Volume 18, Number 1; 2019 19DOI:10.21693/1933-088X-18.1.19

Pressure vs Flow-Induced Pulmonary Hypertension

Jeffrey R. Fineman, MD
Department of Pediatrics
University of California, San Francisco
San Francisco, CA

Stephen M. Black, PhD
Department of Medicine
The University of Arizona Health Sciences
Tucson, AZ

The pathophysiology of pulmonary 
hypertension (PH) is multifactorial, 
complex, and incompletely understood.1,2 
However, it is known that abnormal 
mechanical forces within the pulmonary 
vasculature participate in the disease 
process.3 The pulmonary vasculature is 
continually exposed to hemodynam-
ic forces that include: (1) shear stress, 
the tangential friction force acting on 
the vessel wall due to blood flow4,5; (2) 
hydrostatic pressure, the perpendicular 
force acting on the vascular wall6; and (3) 
cyclic strain, the circumferential stretch 
of the vessel wall.7,8 Mechanosensors 
on pulmonary vascular endothelial cells 
detect these forces and transduce them 
into biochemical signals that trigger 
vascular responses (Figure 1).9,10 Among 
the various force-induced signaling 
molecules, nitric oxide (NO), reactive 
oxygen species (ROS), and endothelin-1 
(ET-1) have been implicated in vascu-
lar health and disease.11-12 For example, 
increases in physiologic shear stress 
associated with increased cardiac output 
(ie, during exercise) result in induction of 
NO production with decreased ROS and 
ET-1, facilitating pulmonary vasodila-
tion and increased flow. However, the 
pathologic pulmonary vasculature may 
induce supraphysiologic levels of shear 
stress, pressure, and cyclic strain resulting 
in decreased NO with increased ROS 
and ET-1.13,14 Thus, abnormal hemody-
namic forces develop in and participate 

in the disease progression of most forms 
of pulmonary vascular disease (PVD).15 
However, the influence of hemodynamic 
forces in the pathobiology of PVD is 
most clearly demonstrated in patients 
with PH secondary to congenital heart 
disease (CHD).16

PH SECONDARY TO CHD
CHD remains one of the most com-
mon worldwide causes of PVD,17 and 
represents 45% to 55% of all pediatric 
PVD.18 In these patients, structural 
cardiac abnormalities result in increased 
flow within the pulmonary vasculature—
with or without a direct pressure stim-
ulus from the systemic ventricle—that 
in turn cause well-described progressive 
histopathologic changes within the 
pulmonary circulation.19,20

Classification of PVD associated with 
CHD belies the complexity and vary-
ing physiology of predisposing cardiac 
lesions—from the classic example of 
unrestrictive ventricular septal defect 
(VSD) to complex single-ventricle 
lesions. The natural history of PVD 
associated with systemic-to-pulmonary 
shunt reveals the differential, or perhaps 
incremental, effects of increased pulmo-
nary blood flow and increased pulmo-
nary arterial pressure. In patients with 
increased blood flow alone—pre-tri-
cuspid valve lesions such as atrial septal 
defects (ASDs)—the development of 
PVD is uncommon and presents late, 

among 5% to 15% of patients by the 
fourth decade of life.21 In stark contrast, 
in patients with increased blood flow 
and a direct pressure stimulus from 
the systemic ventricle—post-tricuspid 
lesions such as unrestrictive VSDs or 
truncus arteriosus—the development of 
PVD is common, and develops early in 
life. The progression of PVD in these 
lesions reflects the differing hemody-
namic insults to the pulmonary vascula-
ture. In addition, genetic predispositions 
and/or differences in oxygen tension 
delivered to the pulmonary vasculature 
likely participate in disease progression, 
and represent an important, yet poorly 
understood area of investigation.1,22,23 
A summary of the risk of developing 
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Figure 1: Biomechanical Forces Regulate 
Vessel Tone. Vascular tone is regulated by 
the opposing effects of vasodilators and 
vasoconstrictors that are predominantly 
produced by the vascular endothelium. 
These bioactive factors are heavily regulated 
by biomechanical forces such that laminar 
SS (LSS) stimulates factors that enhance 
vasodilation while cyclic stretch (CS) 
enhances vasoconstriction.
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irreversible PVD with different lesions 
associated with increased pulmonary 
blood flow and the age of development 
is described in Table 1.

Thus, the investigation of the effect 
of specific physiologic and pathophys-
iologic hemodynamic forces on the 
pulmonary vasculature may lead to 
targeted therapeutic approaches for 
PVD secondary to CHD, as well as 
inform other types of PVD, in which 
abnormal mechanical forces participate 
in disease progression. Using endothe-
lial cell monolayers, a growing body 
of in vitro literature informs the effect 
of different types and magnitudes of 
biomechanical forces on endothelial cell 
function. These data are summarized in 
the following two paragraphs.

REGULATION OF 
ENDOTHELIAL VASOACTIVE 
FACTORS BY BIOMECHANICAL 
FORCES: IN VITRO STUDIES
Vasodilators: NO, Prostacyclin, 
Endothelium-derived Hyperpolarizing 
Factor
Nitric oxide is a vasorelaxant produced by 
NO synthase isoforms converting L-ar-
ginine to citrulline. In the blood vessels, 
NO is synthesized in the endothelial 
cells (ECs) and diffuses to the adjacent 
smooth muscle cells (SMCs), where it ac-
tivates soluble guanylate cyclases (sGC).28 
This leads to activation of cGMP-depen-
dent PKG and other effector proteins, 
including ion channels, ion pumps, and 
phosphodiesterases (PDEs).29 NO is also 
known to inhibit platelet aggregation and 
inhibit SMC proliferation. Physiologic 

laminar shear stress (SS) is well known to 
increase NO production via endothelial 
NO synthase (eNOS) phosphorylation 
and/or stimulating EC receptors and 
increasing intracellular Ca2+.30 Exposing 
ECs to laminar SS can also suppress 
ROS levels.31-32 Importantly, exposing 
ECs to either pathologic low or high 
levels of laminar SS, or irregular flow 
patterns, leads to higher levels of ROS 
and less available NO.33-34 A large body 
of evidence demonstrates that patients 
with advanced pulmonary vascular dis-
ease have decreased bioavailable NO and 
increased ROS production.35 Importantly, 
patients with PVD secondary to CHD 
also demonstrate early aberrations in NO 
production.36

Derived from arachidonic acid within 
the EC, prostacyclin (PGI2) is another 
vasodilator with a broad range of effects 
on the vasculature that is induced by flow 
(laminar SS). Prostacyclin binds to the 
prostacyclin receptors (IP),37 which are 
located on both platelets and SMCs38 and 
that leads to inhibition of platelet aggre-
gation.39 Acting via Gs GPCR prostaglan-
din receptors, it induces cAMP synthesis 
and well-described PKA-dependent 
pathway of the cytoskeletal reorganization 
and relaxation.40 The effects of PGI2 are 
tightly related to NO effects since PGI2 
potentiates NO release and, in turn, NO 
potentiates the effect of PGI2 on SMCs.41 
Prostacyclin possesses antiproliferative 
activity toward SMC and has anti-inflam-
matory effect inhibiting proinflammatory 
cytokines and activating anti-inflam-
matory cytokines expression. PGI2 also 
exerts protective effects in the vasculature 

by inhibiting SMC hypertrophy, migra-
tion, and proliferation.42 Decreased PGI2 
has been demonstrated in the lungs of 
patients with advanced PVD.43 In vitro 
studies demonstrate increased PGI2 secre-
tion during physiologic shear stress, but 
decreased release during pathologic levels 
of shear and cyclic stretch.44

Endothelium-derived hyperpolarizing 
factor (EDHF) produced by the EC is a 
vasodilator of unknown nature, which has 
been shown to be important for vascular 
tone in smaller arteries.45 Vasorelaxation 
occurs following endothelial stimulation 
through a non-NO, non-prostanoid 
pathway originally ascribed to the actions 
of EDHF.46 EDHF involves hyperpo-
larization, generated in the endothelium, 
which spreads via myoendothelial gap 
junctions to the SMCs, and it is this 
hyperpolarization that results in relax-
ation of the vascular SMCs.47-50 Flow-in-
duced vasodilation that is independent 
of endothelium-derived NO and PGI2 is 
typically due to EDHF.51 EDHF initiates 
SMC hyperpolarization directly follow-
ing its release from the endothelium.52-53 
The endothelial hyperpolarization is 
initiated by the activation of KCa chan-
nels.54 H2O2 is believed to be an EDHF 
that acts primarily on the prearterioles 
and arterioles where EDH-mediated 
relaxation becomes more important than 
EDNO.55-57 Shear stress can induce the 
release of H2O2 from ECs, which acts as 
an EDHF that contributes to flow-in-
duced vasodilation in coronary arteri-
oles.58 H2O2 can induce this hyperpolar-
ization by several mechanisms including 
cGMP or cAMP-meditated pathway, 
activation of PKA/PLA2, or the direct 
activation of various K+ channels.59

Vasoconstrictors: ET-1, Thromboxane, 
Angiotensin II
Endothelin-1 is a 21 amino acid poly-
peptide produced by the EC that in-
duces potent vasoconstriction and SMC 
proliferation. ET-1 is a GPCR agonist 
inducing Ca2+ elevation in affected cells. 
In the vasculature, ET-1 has pleiotropic 
effects producing SMC constriction via 
ETA receptors and inducing relaxation 
via endothelial ETB receptors.60 In-
creased ROS production caused by ET-1 
promotes vasoconstriction and vascular 
remodeling, in part, via the suppression 

Table 1. Risk of PVD in Differing Lesions Associated With CHD and Increased Pulmonary 
Blood Flow.24-27 These data are adapted from reference 98.

CHD WITH INCREASED PULMONARY BLOOD FLOW AND/OR PRESSURE

DEFECT RISK OF PVD AGE OF OCCURRENCE

Truncus Arteriosus ∼100% <2 years

A-V Septal Defect ∼100% ∼2 years

Transportation of Great 
Arteries + VSD

∼70%-100% 1-2 years

Patent Ductus Arteriosus ∼15%-20% >2 years

Ventricular Septal Defect ∼15%-20% >2 years

Atrial Septal Defect ∼20% >20 years

Defects in bold and italics represent high-flow/direct high-pressure lesions; defects in italics 
represent high-flow/variable direct high-pressure lesions; ASD is a high-flow lesion without a 
direct pressure stimulus from the systemic ventricle.
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of NO activity.61 However, physiologi-
cal levels of shear stress have a negative 
effect on the expression of ppET-1 and 
ET-1-converting enzyme (ECE-1) in 
the EC.65-66 This downregulation of the 
ET-1 system depends on eNOS activa-
tion and oxidative stress.66-67 Conversely, 
cyclic stretch significantly upregulates 
preprET-1 mRNA expression in ECs.68 
A wealth of evidence implicates ET-1 
signaling in the pathophysiology of 
PVD secondary to CHD. For example, 
ET-1 mRNA and peptide expression are 
significantly upregulated in PH models 
and patients,62-64 and ET-1 levels are 
increased in both the plasma and lung 
of patients with PVD and, importantly, 
correlate with disease prognosis.62,63,69

Another arachidonic acid derivative, 
Thromboxane A2 (TxA2), is secreted by 
platelets, inducing platelet aggregation, 
thrombosis, and reducing blood flow. 
TxA2 promotes platelet aggregation and 
expresses adhesive cofactors for platelets 
such as von Willebrand factor, fibronectin 
and thrombospondin, and procoagulant 
factors.70 TxA2 exerts its biological activity 
through its cognate TP GPCR receptor.71 
TxA2 receptor is known to promote cell 
migration and proliferation of SMCs.72-74 
Thromboxane is a functional antagonist 
of prostacyclin and balance between them 
supports vascular homeostasis. Interest-
ingly, in vitro studies demonstrate de-
creased TxA2 secretion during physiologic 
SS, but increased release during patholog-
ic levels of shear and cyclic stretch.75,76

Angiotensin II (Ang II) is produced 
from angiotensin I in the lung tissue by 
angiotensin-converting enzyme (ACE). 
Ang II is a potent vasoconstrictor 
acting via GPCR Ang II type 1 and 
type 2 receptors (AT1R and AT2R). 
Activated Gq GPCR AT1R stimulates 

phospholipase C pathway and increases 
intracellular Ca2+ levels via IP3 receptors. 
Ang II promotes SMC remodeling, cell 
growth, fibrosis, collagen deposition, and 
contractility.77 Shear stress can upregu-
late ACE expression in SMCs.78 AT1R 
is also likely a redox-coupled mechano-
sensor that regulates oxidative stress, as 
studies have demonstrated that AT1R 
is closely associated with ROS produc-
tion.79-81 Interestingly, laminar SS can 
induce ROS by AT1R-mediated down-
regulation of eNOS expression, which is 
dependent on Akt and Erk activity.82

Although these in vitro studies have 
been very informative, several limitations 
are noteworthy. For example, traditional 
studies of EC mechanotransduction are 
performed utilizing EC monolayers.83 
Therefore, important interactions between 
ECs and SMCs are not captured during 
these studies. In addition, replicating in 
vivo forces in in vitro cell culture experi-
ments is fraught with difficulties, includ-
ing the estimation of the magnitude, type, 
and duration of the mechanical pertur-
bations, as well as the inability to apply 
simultaneous differential forces as occur 
in vivo.84-87 For example, the amount of 
cyclic stretch that results from a particular 
force will also be dependent on the com-
pliance of the blood vessel. In addition, 
EC mechanotransduction is dependent 
on the developmental stage and vascular 
bed of the EC investigated. Therefore 
in vitro studies must be correlated with 
observations made in vivo in clinically 
relevant models of human CHD.

PRESSURE VS FLOW: IN VIVO 
STUDIES
Animal Models
To understand the impact of increased 
pressure, flow, or both on the pulmonary 

vasculature, animal models of CHD 
provide insight on the progression and 
mechanisms of PVD and allow for 
preclinical testing of pharmacologic or 
other interventions.88 Low pulmonary 
blood flow, high pulmonary arterial 
pressure and resistance, and a dominant 
right ventricle characterize normal fetal 
physiology.89 At birth, dramatic changes 
in pulmonary blood flow (PBF) pat-
terns occur, most notably a rise in PBF 
and decline in vascular resistance.90 
Associated with these changes are 
dramatic changes in gene expression 
patterns, including cascades that have 
been implicated in the development 
of PVD.91 However, in the setting of 
CHD these birth-related changes are 
altered; a delayed increase in PBF after 
birth is well characterized.92,93 Therefore, 
in order to truly simulate CHD, fetal 
creation of the defects is essential. To 
this end, we initially created a model of 
increased PBF and pressure by placing 
a large Gore-Tex graft between the 
ascending aorta and pulmonary artery in 
late-gestation fetal lambs.94 This model 
mimics lesions such as a large VSD. Not 
only does the physiology of this model 
mimic infants with common CHD, 
the biochemical and gene expression 
alterations described also mimic infants 
with CHD.95 To investigate the in vivo 
effects of flow alone, we have recently 
developed an ovine model of increased 
PBF to the right lung following in utero 
ligation of the left pulmonary artery. 
Our preliminary data demonstrate the 
expected physiologic differences in these 
models (Table 2). Shunt lambs have 
both increased PBF and pressure, while 
the right lungs of LPA ligation lambs 
have increased PBF with a very modest 
increase in pressure. Importantly, the 

Table 2. Baseline Hemodynamics in Control (n=9), LPA Ligation (n=8), Shunt (n=4) Lambs.

SBP 
(mmHg)

DBP 
(mmHg)

MAP 
(mmHg) HR bpm

PA SBP 
(mmHg)

PA DBP 
(mmHg)

MPAP 
(mmHg)

Δ PAP 
(mmHg)

RPAQ (L/
min)

Control 97±12 57±8.6 70±9.4 118±21 20±3.4 8.5±1.6 14±1.8 11.8±0.2 0.7±0.1

LPA 106±17 58±14 74±15 121±16 27±5.2* 12±3.3* 19±3.6* 14.8±3.2 1.4±0.3*

Shunt 118±5.7* 36±8.5* 61±8.7 126±17 35±9.2* ϒ 18±5.1* ϒ 26±6.3* ϒ 18.±0.4* ϒ 2.0±0.2* ϒ

 P<0.05 vs control. ϒP<0.05 shunt vs LPA ligation lambs. For control and shunt lambs, right pulmonary artery pulmonary blood flow (RPAQ) 
was estimated assuming 55% of total PBF to the right lung. SBP=systolic blood pressure; DBP=diastolic blood pressure; MAP=mean 
arterial pressure; HR=heart rate; PA SBP=pulmonary artery systolic blood pressure; PA DBP=pulmonary artery diastolic blood pressure; 
MPAP=mean pulmonary arterial pressure; Δ PAP=pulse pulmonary pressure; MPAQ=main pulmonary artery blood flow; RPAQ=right lung 
pulmonary artery blood flow.
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pulmonary pulse pressure is only elevat-
ed in shunt lambs.

To begin to investigate the effects of 
pressure + flow vs flow alone on endo-
thelial function in vivo we compared 
ET-1 and NO production in shunt, 
LPA ligation, and age-matched control 
lambs. Interestingly, ET-1 levels are 
increased in shunt lambs, but not in 
LPA ligation lambs. Correlative in vitro 
studies demonstrate that cyclic stretch 
applied to normal pulmonary artery en-
dothelial cells (PAECs) increases ET-1 
levels, while shear stress decreases ET-1 
levels. Not surprisingly, eNOS protein 
expression is increased in both shunt 
and LPA lungs, which likely represents 
flow (shear stress) eNOS induction. 
However, NO metabolite (NOx) levels 
are increased in LPA lungs, but de-
creased in shunt lungs (data not shown). 
These data suggest eNOS uncoupling 
in shunt lambs, as we have previously 
described,96,97 but maintenance of eNOS 
coupling in LPA ligation lambs.

We next sought to examine the gene 
expression profile of PAECs, which are 
primarily affected by both shear (in-
creased PBF) and cyclic stretch (in-
creased pulmonary pressure.) We first 
performed RNA sequencing on PAECs 
derived from control, LPA, and shunt 
lambs. Principal clustering analysis 
(Figure 2A) demonstrated excellent 
differentiation between PAECs derived 
from each model, as did dendrogram 
and unsupervised hierarchical clustering 
heat map analysis (Figure 2B). These 
data provide visualization for transcrip-
tome-level differences between models. 
Although important differences exist, 
the LPA ligation model (increased pul-
monary arterial flow only) is the most 
similar to control, while shunt lambs 
(increased pulmonary arterial pressure 
and flow) have more differences in RNA 
expression, both in terms of significance 
and fold change.

CONCLUSION
The natural history of pulmonary vascu-
lar disease associated with CHD suggests 
distinct pathophysiologic consequences 
of different hemodynamic insults to the 
pulmonary vasculature. Classic in vitro 
studies demonstrate significant differ-
ences in the endothelial response to 

differing types, duration, and magnitude 
of biomechanical forces. Our preliminary 
in vivo studies demonstrate substantial 
differences between the animals with 
normal physiology, those with increased 
pulmonary blood flow alone (LPA), and 
those with increased pulmonary pressure 
and flow (shunt) both in NO/ET-1 
signaling, and in the proximal pulmonary 
artery endothelial cell transcriptome. 
Given the significant burden of PVD 
among patients with CHD particularly 
in the pediatric population, a fundamen-
tal understanding of the differing mech-
anisms leading to vascular pathology 
associated with different CHD lesions 
provides an essential tool in tailoring 
therapy to these patients. As medicine is 
increasingly focused on personalized and 
precision approaches, improved in vitro 
techniques, and improved animal models 
of CHD are needed to separate the ef-
fects of differential mechanical forces on 
the pulmonary vasculature. These data 
may yield important mechanism-specific 
therapeutic strategies for patients with 
differing CHD as well as other forms of 
PVD.
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