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The primary function of the right ventricle (RV) is to receive systemic venous return
and pump it into the normally low-pressure, highly distensible pulmonary arterial
system.1 Compared to the left ventricle (LV), the RV is thinner with less mass, has
2 layers of muscles rather than 3, and has a bellow shape rather than an ellipsoid
shape. Due to its typically low afterload, the metabolic demand for the RV is lower.
The normal RV stroke work index is at 25% of the LV.2 Animal studies have shown
that the right coronary artery flow is lower, the oxygen extraction is lower in the RV
compared to the LV, and the mean RV myocardial oxygen consumption is less than
half that of the LV.3,4 The study of myocardial metabolism has been dominated by
studies of the LV metabolism until recently, with increasing recognition that RV
performance affects patients’ morbidity and mortality in patients with pulmonary
hypertension5 and even in patients with left-sided heart failure.6

MYOCARDIAL METABOLISM
Contraction of the heart muscle requires
conversion of the chemical energy
received from the substrates to
mechanical energy in the form of aden-
osine triphosphate (ATP). In the adult
heart, fatty acid metabolism is the major
contributor to ATP production, whereas
during early embryogenesis, anaerobic
glycolysis is the major energy-producing
metabolic pathway. The transition to
fatty acid oxidation (FAO) as the
primary source of energy for the heart
begins right after birth, with increased
expression of the genes encoding for the
enzymes in the FAO pathway. In fact,
in its basal metabolic state, the adult
heart utilizes 60% to 90% of the fatty
acids as the energy source and 10% to
40% of the carbohydrates, with minimal
contributions from ketones and lactate.7
In the adult heart under stress or
exercise, the efficiency of glucose as sub-
strates exceeds the efficiency of fatty
acids quite significantly, resulting in the
carbohydrates as the preferred fuel.8

Randle et al9 proposed the glucose-
fatty acid cycle (Figure 1), where the fuel
selection and uptake are controlled by
the competition between the substrates.
In this reciprocal inhibitory mechanism,
fatty acids inhibit glucose oxidation at

the level of pyruvate dehydrogenase
complex, and the inhibition of FAO by
glucose is through the inhibition of the
enzyme carnitine-palmitoyl transferase I
by malonyl-CoA.

With comorbidities (hypertension,
diabetes, heart failure), various studies
have shown a shift in the predominant
metabolic pathway in the heart with
decreased reliance on the fatty acid oxi-
dation pathway. The factors commonly
attributed to this alteration include
changes in the mitochondrial lipid
content, increased cellular oxidative
stress, the decrease in the myocardial
enzyme activity, or changes in the myo-
cardial nuclear receptor peroxisome
proliferator activated-receptor leading to
downregulation of genes controlling the
FAO pathway.11,12 The long-term
dependency on glucose as the primary
substrate, especially glycolysis, may lead
to energy starvation and heart failure.12

The overview of myocardial metabolism
in normal and diseased states is pre-
sented in Table 1.13-15

RV METABOLISM IN DISEASE
Pulmonary arterial hypertension (PAH)
is associated with increased pulmonary
vascular resistance (PVR), which leads to
higher afterload for the right ventricle

(RV). The thin-walled RV hypertrophies
initially followed by dilation and even-
tually failure. Metabolic imaging in
humans and mammals allowed interro-
gation of metabolic alterations that
accompany RV hypertrophy (RVH) and
RV failure.

The relationship of RV fatty acid
metabolism and functioning was first
studied using single-photon emission
computerized tomography (SPECT) and
a branched chain analog of iodophenyl
pentadecanoic acid (BMIPP) in 21
patients with pulmonary hypertension
(PH).16 Patients with normal myocardial
fatty acid uptake had higher RV ejection
fraction, and patients with impaired fatty
acid metabolism had higher death rates
when compared to patients with normal
fatty acid metabolism.16 In another study
of 27 subjects, the existence of impaired
fatty acid metabolism in patients is cor-
related with severe RV hypertrophy.17

18F-FDG, a glucose tracer analog
used in positron emission tomography
(PET), is taken up by viable myocytes in
a similar manner to glucose, but cannot
be metabolized further after being con-
verted to 18F-FDG 6-phosphate and
thus trapped in myocytes. The uptake of
18F-FDG in the heart depends on the
glucose concentration in the plasma, the
rate of glucose delivery to the heart, and
its use. Oikawa et al18 studied the
impact of PH on RV FDG uptake in
24 patients. Increased RV free wall
FDG uptake correlated with the under-
lying RV pressure overload. In 10
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patients (NYHA Class III/IV) who
received epoprostenol therapy for a
period of 3 months and a follow-up
PET showed decreased RV FDG accu-
mulation, which correlated with
improved RV function (Figure 2).
Bokhari et al19 evaluated myocardial
blood flow (MBF) using 13N-NH3 for
perfusion and 18F-FDG for glucose
metabolism in 16 patients with idio-
pathic PAH. MBF was normal in all
patients, but RV/LV glucose uptake
ratio was correlated with pulmonary
arterial pressures (PAP).19

Alteration in RV metabolism can also
be seen in disease where pulmonary
pressures might not be significantly ele-
vated or secondary to elevated pulmonary
diastolic pressure. Choi et al reported an
increase in FDG uptake in the RV myo-
cardium in patients with chronic
obstructive lung disease, which is corre-
lated with the severity of lung
obstruction and pack-year of smoking.20

Meilniczuk et al21 studied 68 patients
with a history of congestive heart failure
(NYHA Class II-III) with moderate
PH. As the RV function worsened, the

ratio of RV/LV glucose uptake
increased.

18F-FDG studies are limited as the
information gathered only pertains to the
glucose uptake in the disease state.
Further probing of oxidative component
of the metabolism was performed by
Yoshinaga et al22 using 11C-acetate as a
marker in 36 subjects (27 PH patients
and 9 healthy controls). PET imaging
showed higher RV kmono (indicative of
higher oxidative metabolism) than con-
trols that correlated significantly with
mean PAP, PVR, and brain-natriuretic
peptide values. However, no correlation
was noted between RV kmono and RV
end-diastolic volume index, RV mass
index, or 6-minute walk test. LV Kmono
was not elevated compared to controls.
These data indicate that increased RV
oxidative metabolism might exist as a
compensatory mechanism before RV
failure ensues.

The cause of increased RV FDG in
RV metabolic derangement was further
investigated by Paio et al, who hypothe-
sized that RV dysfunction in RVH is in
part caused by activation of pyruvate

dehydrogenase kinase (PDK)-induced
glycolytic shift from glucose oxidation
(GO) to glycolysis in the RV.23 Two
different rat models were compared: one
RVH with PAH (induced using mono-
crotaline) and the other RVH without
PAH (induced using pulmonary artery
banding). In RVH with PAH, glucose
transporter-1 expression and pyruvate
dehydrogenase (PDH) phosphorylation
were increased, along with reduced RV
oxygen consumption and increased gly-
colysis. A PDK inhibitor, dichloro-
acetate, increased glucose oxidation and
reversed the effects of monocrotaline on
RV function. In the RVH without PAH
model, the glycolytic shift and the
benefit with dichloroacetate inhibition
were also seen, albeit less compared to
RVH with PAH.

Studies aimed at targeting the reversal
of this metabolic shift by using partial
inhibitors of FAO and exploiting the
reciprocal relationship between FAO and
GO (Randle’s cycle) showed that both
trimetazidine and ranolazine decreased
FAO and restored PDH activity and
GO in a rat pulmonary banding
model.24 Potential beneficial effect has
been seen in patients with PAH asso-
ciated with heart failure with preserved
ejection fraction.25 An ongoing trial of
ranolazine in patients with PAH is
enrolling and cardiac magnetic resonance
imaging, 18F-FDG, and 11C-acetate
PET are used as readouts for the effect
of ranolazine on the metabolic shift
(NCT01839110).

CONCLUSION
Cardiac metabolism in general and spe-
cifically RV metabolism changes in
response to the oxygen and substrate
availability. The RV is dependent on the
fatty acid oxidation pathway for energy
production and its performance under
rest and normal conditions. Under con-
ditions of increased metabolic demand,
there is an initial increased oxidative
metabolism associated with increased
glucose utilization. Accompanying this
process, a metabolic switch is also
observed, which leads to inhibition of
the fatty acid pathway and activation of
the glycolytic pathway. Key molecular
pathways that are involved in compen-
sated metabolic remodeling in RV

Figure 1: The “glucose-fatty acid cycle,” a homeostatic mechanism to control circulating con-
centrations of glucose and fatty acids. The term “cycle” is used here to describe a reciprocal
control between glucose and fatty acid metabolism. The effect of glucose is mediated by
insulin. LCFA, long-chain fatty acid; TAG, triacylglycerol; Pyr, pyruvate. Adapted with per-
mission from Hue L, Taegtmeyer H. The Randle cycle revisited: a new head for an old hat.
Am J Physiol Endocrinol Metab. 2009;297(3):E578-E591.10

Table 1: Overview of Myocardial Metabolism in Physiological and Pathological Conditions

Condition Glucose Metabolism Fatty Acid Metabolism

Sex (Female) Decreased Increased

Aging Increased Decreased

Obesity - Increased

Diabetes Decreased Increased

Heart Failure/Hypertension Increased Decreased
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hypertrophy vs. the eventual RV failure
still need to be better elucidated.
Minimal data are currently available to
support metabolic interventions for the
management of impaired RV function
and the failing heart.
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